中国组织工程研究 ›› 2021, Vol. 25 ›› Issue (13): 2087-2096.doi: 10.3969/j.issn.2095-4344.2192
• 干细胞综述 stem cell review • 上一篇 下一篇
陈菊芳,田玉楼,郝 鑫
收稿日期:
2020-04-16
修回日期:
2020-04-29
接受日期:
2020-06-03
出版日期:
2021-05-08
发布日期:
2020-12-29
通讯作者:
田玉楼,博士,教授,中国医科大学口腔医学院·附属口腔医院正畸二科,辽宁省口腔疾病重点实验室,辽宁省沈阳市 110002
作者简介:
陈菊芳,女,1994年生,安徽省蚌埠市人,汉族,中国医科大学在读硕士,主要从事口腔正畸和骨组织工程的研究。
基金资助:
Chen Jufang, Tian Yulou, Hao Xin
Received:
2020-04-16
Revised:
2020-04-29
Accepted:
2020-06-03
Online:
2021-05-08
Published:
2020-12-29
Contact:
Tian Yulou, MD, Professor, Second Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, Liaoning Province, China
About author:
Chen Jufang, Master candidate, Second Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, Liaoning Province, China
Supported by:
摘要:
文题释义:
富血小板血浆:是一种经离心获得的血小板含量高于正常全血四五倍的血液提取物,体外激活后可释放出多种组织修复所需的生长因子,如血小板衍化生长因子、转化生长因子β、血管内皮生长因子、胰岛素样生长因子1等,可促进伤口愈合,修复骨缺损。
可注射性支架:是一种具有良好流动性、生物相容性且无毒的材料,与细胞及细胞因子复合后注入机体缺损部位,或直接注体内,材料到达缺损部位后能在原位形成具有一定机械强度、形状并且可与体液进行交换的支架,已被广泛用于骨修复以及药物搭载。可注射性支架在颅颌面骨再生中的优越性是体外支架所无法替代的,而且它在临床使用的可能性也非常大,将是组织工程支架的重要发展方向之一。
背景:颅颌面骨缺损的修复仍面临严峻挑战,骨再生理念的引入为该问题指明了新的方向。脂肪来源干细胞获取便捷且具有显著的成骨分化能力,被认为是颅颌面骨再生的理想种子细胞。
目的:综述影响脂肪干细胞成骨分化的因素及其在颅颌面骨再生的研究进展,以期为脂肪干细胞促进颅颌面骨再生的进一步研究提供思路。
方法:计算机检索PubMed数据库、万方数据库、CNKI期刊全文数据库2013年1月至2020年2月收录的相关文献。检索词为“adipose-derived stem cells;cranio-maxillofacial;oral tissue regeneration;periodontal tissue regeneration;bone regeneration;bone defects;osteogenesis”,最终纳入88篇文献进行归纳总结。
结果与结论:脂肪干细胞能够分化为成骨细胞,可以大量获取,体外扩增能力强,在颅颌面骨再生中具有广阔的应用前景。miRNAs/microRNAs参与了脂肪干细胞的成骨分化,脂肪干细胞与其他细胞共培养、与富血小板血浆联合应用、与改性的钛金属联合应用、应用基因技术等均是提高其成骨分化的有效手段。相较于常规体外支架,脂肪干细胞复合可注射性支架在成骨方面显示出更大的潜力。脂肪干细胞修复颅颌面骨缺损在临床中取得了一定进展,但仍缺乏大规模临床试验的证实。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
陈菊芳, 田玉楼, 郝 鑫. 脂肪干细胞在颅颌面骨再生中的作用与潜力[J]. 中国组织工程研究, 2021, 25(13): 2087-2096.
Chen Jufang, Tian Yulou, Hao Xin. Role and potential of adipose-derived stem cells in cranio-maxillofacial bone regeneration[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(13): 2087-2096.
[1] 邵高海,李德霞,余雨,等.骨质疏松治疗仪对骨折愈合影响的研究[J].中国骨质疏松杂志,2011,17(1):31-34. [2] SVEDBOM A, HERNLUND E, IVERGÅRD M, et al. Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos. 2013;8:137. [3] DUFRANE D. Impact of Age on Human Adipose Stem Cells for Bone Tissue Engineering. Cell Transplantation. 2017;26(9):1496-1504. [4] BURROW KL, HOYLAND JA. Human Adipose-Derived Stem Cells Exhibit Enhanced Proliferative Capacity and Retain Multipotency Longer than Donor-Matched Bone Marrow Mesenchymal Stem Cells during Expansion In Vitro. Stem Cells Int. 2017;2017:1-15. [5] SCHNEIDER S, UNGER M, VAN GRIENSVEN M. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res. 2017;22:17. [6] TRUJILLO NA, POPAT KC. Increased Adipogenic and Decreased Chondrogenic Differentiation of Adipose Derived Stem Cells on Nanowire Surfaces. Materials (Basel). 2014;7(4):2605-2630. [7] LOTFY A, SALAMA M, ZAHRAN F, et al. Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue:a comparative study. Int J Stem Cells. 2014;7:135-142. [8] SAÇAK B, CERTEL F, AKDENIZ ZD, et al. Repair of critical size defects using bioactive glass seeded with adipose-derived mesenchymal stem cells. J Biomed Mater Res B Appl Biomater. 2017;105:1002-1008. [9] TAJIMA S, TOBITA M, MIZUNO H. Bone Regeneration with a Combination of Adipose-Derived Stem Cells and Platelet-Rich Plasma. Methods Mol Biol. 2018;1773:261-272. [10] DI BATTISTA JA, SHEBABY W, KIZILAY O, et al. Proliferation and differentiation of human adipose-derived mesenchymal stem cells (ASCs) into osteoblastic lineage are passage dependent. Inflamm Res. 2014;63(11):907-917. [11] GU H, XIONG Z, YIN X, et al. Bone regeneration in a rabbit ulna defect model: use of allogeneic adipose-derivedstem cells with low immunogenicity. Cell Tissue Res. 2014;358:453-464. [12] NOMURA I, WATANABE K, MATSUBARA H, et al. Uncultured autogenous adipose-derived regenerative cells promote bone formation during distraction osteogenesis in rats. Clin Orthop Relat Res. 2014;472(12): 3798-3806. [13] WAGNER JM, CONZE N, LEWIK G, et al. Bone allografts combined with adipose-derived stem cells in an optimized cell/volume ratio showed enhanced osteogenesis and angiogenesis in a murine femur defect model. J Mol Med (Berl). 2019;97:1439-1450. [14] 沈凌,王锡友,陈萍,等.同种异体脂肪干细胞复合纳米级胶原基骨材料修复尺骨缺损[J].中国组织工程研究,2015,19(32): 5162-5166. [15] 杨函,康建平,丁裕名,等.同种异体脂肪干细胞复合脱钙骨支架材料修复尺骨缺损:CT扫描及组织学检测[J].中国组织工程研究, 2015,19(28):4520-4525. [16] DING DC, CHOU HL, HUNG WT, et al. Human adipose-derived stem cells cultured in keratinocyte serum free medium:Donor’s age does not affect the proliferation and differentiation capacities. J Biomed Sci. 2013;20(1):59. [17] WU W, NIKLASON L, STEINBACHER DM. The effect of age on human adipose-derived stem cells. Plast Reconstr Surg. 2013;131:27-37. [18] REZAI RAD M, BOHLOLI M, AKHAVAN RAHNAMA M, et al. Impact of Tissue Harvesting Sites on the Cellular Behaviors of Adipose-Derived Stem Cells: Implication for Bone Tissue Engineering. Stem Cells Int. 2017;2017:2156478. [19] RUSSO V, YU C, BELLIVEAU P, et al. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications. Stem Cells Transl Med. 2014;3(2):206-217. [20] LI Z, JIN C, CHEN S, et al. Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol Cell Biochem. 2017;433: 51-60. [21] HAO W, LIU H, ZHOU L, et al. MiR-145 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells through targeting FoxO1. Exp Biol Med (Maywood). 2018;243:386-393. [22] ZHANG WB, ZHONG WJ, WANG L. A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone. 2014;58:59-66. [23] LI KC, CHANG YH, HSU MN, et al. Baculovirus-Mediated miR-214 Knockdown Shifts Osteoporotic ASCs Differentiation and Improves Osteoporotic Bone Defects Repair. Sci Rep. 2017;7(1):16225. [24] LIU X, ZHU W, WANG L, et al. miR-145-5p suppresses osteogenic differentiation of adipose-derived stem cells by targeting semaphorin 3A. In Vitro Cell Dev Biol Anim. 2019;55:189-202. [25] HODGES WM, O’BRIEN F, FULZELE S. Function of microRNAs in the Osteogenic Differentiation and Therapeutic Application of Adipose-Derived Stem Cells (ASCs). Int J Mol Sci. 2017;18(12):2597. [26] JIA B, ZHANG Z, QIU X, et al. Analysis of the miRNA and mRNA involved in osteogenesis of adipose-derived mesenchymal stem cells. Exp Ther Med. 2018;16:1111-1120. [27] CALABRESE G, GIUFFRIDA R, FORTE S, et al. Human adipose-derived mesenchymal stem cells seeded into a collagen-hydroxyapatite scaffold promote bone augmentation after implantation in the mouse. Sci Rep. 2017;7:7110. [28] KIM KI, PARK S. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells. Biomaterials. 2014;35:4792-4804. [29] LIU DC, YANG XN, HUANG CZ, et al. Experimental study on co-culturing adipose-derived stem cells with osteoblasts under different conditions. Eur Rev Med Pharmacol Sci. 2016;20:3535-3543. [30] ROZILA I, AZARI P, MUNIRAH S, et al. Differential osteogenic potential of human adipose-derived stem cells co-cultured with human osteoblasts on polymeric microfiber scaffolds. J Biomed Mater Res A. 2016;104:377-387. [31] WANG Y, CHEN X, YIN Y. Human amnion-derived mesenchymal stem cells induced osteogenesis and angiogenesis in human adipose-derived stem cells via ERK1/2 MAPK signaling pathway. BMB Rep. 2018;51: 194-199. [32] ZHANG C, YU L, LIU S. Human amnion-derived mesenchymal stem cells promote osteogenic and angiogenic differentiation of human adipose-derived stem cells. PLoS One. 2017;12(10):e0186253. [33] WANG Y, DU Y, YUAN H, et al. Human amnion-derived mesenchymal stem cells enhance the osteogenic differentiation of human adipose-derived stem cells by promoting adiponectin excretion via the APPL1-ERK1/2 signaling pathway. IUBMB Life. 2020;72:296-304. [34] YANG H, HONG N, LIU H, et al. Differentiated adipose-derived stem cell cocultures for bone regeneration in RADA16-I in vitro. J Cell Physiol. 2018;233:9458-9472. [35] 孙仕晨,董腾哲,黄昕,等.Transwell共培养条件下诱导脂肪干细胞成骨能力的改变[J].中国组织工程研究,2016,20(28):4155-4161. [36] BUSILACCHI A, GIGANTE A, MATTIOLI-BELMONTE M, et al. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym. 2013; 98(1):665-676. [37] AMABLE PR, CARIAS RB, TEIXEIRA MV, et al. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther. 2013;4(3):67. [38] TAJIMA S, TOBITA M, ORBAY H, et al. Direct and indirect effects of a combination of adipose-derived stem cells and platelet-rich plasma on bone regeneration. Tissue Eng Part A. 2015;21:895-905. [39] 吴雪莲,杨春.富血小板血浆在颞下颌关节骨关节炎的作用机制及应用研究进展[J].中国实用口腔科杂志,2018,11(2):122-126. [40] CRUZ AC, CAON T, MENIN Á, et al. Adipose-derived stem cells incorporated into platelet-rich plasma improved bone regeneration and maturation in vivo. Dent Traumatol. 2015;31(1):42-48. [41] TOBITA M, UYSAL CA, GUO X, et al. Periodontal tissue regeneration by combined implantation of adipose tissue-derived stem cells and platelet-rich plasma in a canine model. Cytotherapy. 2013;15(12): 1517-1526. [42] MALEC K, GÓRALSKA J, HUBALEWSKA-MAZGAJ M, et al. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells. Int J Nanomedicine. 2016;11:5349-5360. [43] LV L, LIU Y, ZHANG P, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials. 2015;39: 193-205. [44] COWDEN K, DIAS-NETIPANYJ MF, POPAT KC. Effects of titania nanotube surfaces on osteogenic differentiation of human adipose-derived stem cells. Nanomedicine. 2019;17:380-390. [45] KO WK, HEO DN, MOON HJ, et al. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci. 2015;438:68-76. [46] HEO DN, KO WK, LEE HR, et al. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J Colloid Interface Sci. 2016;469:129-137. [47] QUARTO N, SENARATH-YAPA K, RENDA A. TWIST1 silencing enhances in vitro and in vivo osteogenic differentiation of human adipose-derived stem cells by triggering activation of BMP-ERK/FGF signaling and TAZ upregulation. Stem Cells. 2015;33(3):833-847. [48] TANG Y, LV L, LI W, et al. Protein deubiquitinase USP7 is required for osteogenic differentiation of human adipose-derived stem cells. Stem Cell Res Ther. 2017;8(1):186. [49] CHIARELLA E, ALOISIO A, SCICCHITANO S, et al. ZNF521 Represses Osteoblastic Differentiation in Human Adipose-Derived Stem Cells. Int J Mol Sci. 2018;19(12):4095. [50] STROHBACH CA, RUNDLE CH, WERGEDAL JE, et al. LMP-1 retroviral gene therapy influences osteoblast differentiation and fracture repair: a preliminary study. Calcif Tissue Int. 2008;83(3):202-211. [51] ZOU D, ZHANG Z, YE D, et al. Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1α. Stem Cells. 2011;29: 1380-1390. [52] PAN WM, CAO Z, JIA SJ, et al. Synergistic enhancement of bone regeneration by LMP-1 and HIF-1α delivered by adipose derived stem cells. Biotechnol Lett. 2016;38:377-384. [53] LO SC, LI KC, CHANG YH, et al. Enhanced critical-size calvarial bone healing by ASCs engineered with Cre/loxP-based hybrid baculovirus. Biomaterials. 2017;124:1-11. [54] YANAI R, TETSUO F, ITO S, et al. Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression. Cell Calcium. 2019;83:102058. [55] LIM S, CHO H, LEE E, et al. Osteogenic stimulation of human adipose-derived stem cells by pre-treatment with fibroblast growth factor 2. Cell Tissue Res. 2016;364:137-147. [56] DING XP, LI WY, CHEN DS, et al. Asperosaponin VI stimulates osteogenic differentiation of rat adipose-derived stem cells. Regenerative therapy. 2019;11:17-24. [57] ZHU Y, WU Y, CHENG J, et al. Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells. Stem Cell Res Ther. 2018;9(1):53. [58] OTSUKI Y, II M, MORIWAKI K, et al. W9 peptide enhanced osteogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun. 2018;495:904-910. [59] MOKHTARI-JAFARI F, AMOABEDINY G, DEHGHAN MM, et al. Short Pretreatment with Calcitriol Is Far Superior to Continuous Treatment in Stimulating Proliferation and Osteogenic Differentiation of Human Adipose Stem Cells. Cell J. 2020;22:293-301. [60] ZHANG X, JIANG W, LIU YS, et al. Human adipose-derived stem cells and simvastatin-functionalized biomimetic calcium phosphate to construct a novel tissue-engineered bone. Biochem Biophys Res Commun. 2018; 495:1264-1270. [61] 徐万林,卢浩,叶金海,等.载VEGF165多孔聚己内酯支架促进脂肪来源干细胞体内外成骨分化的实验研究[J].中国修复重建外科杂志,2018,32(3):270-275. [62] WANG Z, LIN M, XIE Q, et al. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Int J Nanomedicine. 2016;11:1483-1500. [63] JAHANGIR S, HOSSEINI S, MOSTAFAEI F, et al. 3D-poroβ-tricalcium phosphate-alginate-gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects. J Mater Sci Mater Med. 2018;30(1):1-14. [64] JING X, YIN W, TIAN H, et al. Icariin doped bioactive glasses seeded with rat adipose-derived stem cells to promote bone repair viaenhanced osteogenic and angiogenic activities. Life Sci. 2018;202:52-60. [65] TOOSI S, NADERI-MESHKIN H, KALALINIA F, et al. Bone defect healing is induced by collagen sponge/polyglycolic acid. J Mater Sci Mater Med. 2019;30(3):1-10. [66] CHEN Y, ZHENG Z, ZHOU R, et al. Developing a Strontium-Releasing Graphene Oxide-/Collagen-Based Organic-Inorganic Nanobiocomposite for Large Bone Defect Regeneration via MAPK Signaling Pathway. ACS Appl Mater Interfaces. 2019;11(17):15986-15997. [67] KIM SE, YUN YP, SHIM KS, et al. Effect of lactoferrin-impregnated porous poly(lactide-co-glycolide) (PLGA) microspheres on osteogenic differentiation of rabbit adipose-derived stem cells (rADSCs). Colloids Surf B Biointerfaces. 2014;122:457-464. [68] PARK SH, KWON JS, LEE BS, et al. BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci Rep. 2017;7:6603. [69] MI L, LIU H, GAO Y, et al. Injectable nanoparticles/hydrogels composite as sustained release system with stromal cell-derived factor-1α for calvarial bone regeneration. Int J Biol Macromol. 2017;101:341-347. [70] OLIVEIRA MB, CUSTÓDIO CA, GASPERINI L, et al. Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomater. 2016;41:119-132. [71] LEE D, HEO DN, NAH HR, et al. Injectable hydrogel composite containing modified gold nanoparticles: implication in bone tissue regeneration. Int J Nanomedicine. 2018;13:7019-7031. [72] LIAO HT, TSAI MJ, BRAHMAYYA M, et al. Bone Regeneration Using Adipose-Derived Stem Cells in Injectable Thermo-Gelling Hydrogel Scaffold Containing Platelet-Rich Plasma and Biphasic Calcium Phosphate. Int J Mol Sci. 2018;19(9):2537. [73] HUANG Z, GU H, YIN X, et al. Bone regeneration using injectable poly (γ-benzyl-L-glutamate) microspheres loaded with adipose-derived stem cells in a mouse femoral non-union model. Am J Transl Res. 2019; 11(5):2641-2656. [74] POUREBRAHIM N, HASHEMIBENI B, SHAHNASERI S, et al. A comparison of tissue-engineered bone from adipose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs. Int J Oral Maxillofac Surg. 2013;42(5):562-568. [75] MEHRABANI D, KHODAKARAM-TAFTI A, SHATERZADEH-YAZDI H, et al. Comparison of the regenerative effect of adipose-derived stem cells,fibrin glue scaffold,and autologous bone graft in experimental mandibular defect in rabbit. Dent Traumatol. 2018;34(6):413-420. [76] LEE JW, CHU SG, KIM HT, et al. Osteogenesis of Adipose-Derived and Bone Marrow Stem Cells with Polycaprolactone/Tricalcium Phosphate and Three-Dimensional Printing Technology in a Dog Model of Maxillary Bone Defects. Polymers (Basel). 2017;9(12):450. [77] LAI QG, SUN SL, ZHOU XH, et al. Adipose-derived stem cells transfected with pEGFP-OSX enhance bone formation during distraction osteogenesis. J Zhejiang Univ Sci B. 2014;15(5):482-490. [78] BRESSAN E, BOTTICELLI D, SIVOLELLA S, et al. Adipose-Derived Stem Cells as a Tool for Dental Implant Osseointegration: an Experimental Study in the Dog. Int J Mol Cell Med. 2015;4:197-208. [79] LENDECKEL S, JÖDICKE A, CHRISTOPHIS P, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32(6):370-373. [80] MESIMÄKI K, LINDROOS B, TÖRNWALL J, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009; 38(3): 201-209. [81] SÁNDOR GK, NUMMINEN J, WOLFF J, et al. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med. 2014;3(4):530-540. [82] SÁNDOR GK, TUOVINEN VJ, WOLFF J, et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg. 2013;71(5):938-950. [83] SÁNDOR GK. Tissue engineering of bone:Clinical observations with adipose-derived stem cells, resorbable scaffolds, and growth factors. Ann Maxillofac Surg. 2012;2(1):8-11. [84] 张蕾,孟芝竹,张斌.人脂肪组织来源血管周干细胞成骨、成脂、成软骨分化能力研究[J].中国实用口腔科杂志,2018,11(7):420-425. [85] PRINS HJ, SCHULTEN EA, TEN BRUGGENKATE CM, et al. Bone Regeneration Using the Freshly Isolated Autologous Stromal Vascular Fraction of Adipose Tissue in Combination With Calcium Phosphate Ceramics. Stem Cells Transl Med. 2016;5(10):1362-1374. [86] CASTILLO-CARDIEL G, LÓPEZ-ECHAURY AC, SAUCEDO-ORTIZ JA, et al. Bone regeneration in mandibular fractures after the application of autologous mesenchymal stem cells, a randomized clinical trial. Dent Traumatol. 2017;33(1):38-44. [87] KHOJASTEH A, HOSSEINPOUR S, REZAI RAD M, et al. Buccal fat pad-derived stem cells with anorganic bovine bone mineral scaffold for augmentation of atrophic posterior mandible:An exploratory prospective clinical study. Clin Implant Dent Relat Res. 2019;21: 292-300. [88] IM GI, SHIN YW. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage. 2005;13(10):845-853. |
[1] | 蒲 锐, 陈子扬, 袁凌燕. 不同细胞来源外泌体保护心脏的特点与效应[J]. 中国组织工程研究, 2021, 25(在线): 1-. |
[2] | 林清凡, 解一新, 陈婉清, 叶振忠, 陈幼芳. 人胎盘源间充质干细胞条件培养液可上调缺氧状态下BeWo细胞活力和紧密连接因子的表达[J]. 中国组织工程研究, 2021, 25(在线): 4970-4975. |
[3] | 张 超, 吕 欣. 髋臼骨折固定后的异位骨化:危险因素、预防及其治疗进展[J]. 中国组织工程研究, 2021, 25(9): 1434-1439. |
[4] | 周继辉, 李新志, 周 游, 黄 卫, 陈文瑶. 髌骨骨折修复内植物选择的多重问题[J]. 中国组织工程研究, 2021, 25(9): 1440-1445. |
[5] | 王德斌, 毕郑刚. 尺骨鹰嘴骨折-脱位解剖力学、损伤特点、固定修复及3D技术应用的相关问题[J]. 中国组织工程研究, 2021, 25(9): 1446-1451. |
[6] | 姬志祥, 蓝常贡. 尿酸盐转运蛋白在痛风中的多态性和治疗相关性[J]. 中国组织工程研究, 2021, 25(8): 1290-1298. |
[7] | 袁 美, 张新新, 郭祎莎, 毕 霞. 循环microRNA在血管性认知障碍诊断中的应用[J]. 中国组织工程研究, 2021, 25(8): 1299-1304. |
[8] | 蒋红英, 朱 亮, 余 曦, 黄 靖, 向小娜, 兰正燕, 何红晨. 富血小板血浆干预脊髓损伤患者压力性损伤的作用[J]. 中国组织工程研究, 2021, 25(8): 1149-1153. |
[9] | 张秀梅, 翟运开, 赵 杰, 赵 萌. 类器官模型国内外数据库近10年文献研究热点分析[J]. 中国组织工程研究, 2021, 25(8): 1249-1255. |
[10] | 王正东, 黄 娜, 陈婧娴, 郑作兵, 胡鑫宇, 李 梅, 苏 晓, 苏学森, 颜 南. 丁酸钠抑制氟中毒可诱导小胶质细胞活化及炎症因子表达增多[J]. 中国组织工程研究, 2021, 25(7): 1075-1080. |
[11] | 汪显耀, 关亚琳, 刘忠山. 提高间充质干细胞治疗难愈性创面的策略[J]. 中国组织工程研究, 2021, 25(7): 1081-1087. |
[12] | 万 然, 史 旭, 刘京松, 王岩松. 间充质干细胞分泌组治疗脊髓损伤的研究进展[J]. 中国组织工程研究, 2021, 25(7): 1088-1095. |
[13] | 廖成成, 安家兴, 谭张雪, 王 倩, 刘建国. 口腔鳞状细胞癌干细胞的治疗靶点及应用前景[J]. 中国组织工程研究, 2021, 25(7): 1096-1103. |
[14] | 赵 敏, 冯柳祥, 陈 垚, 顾 霞, 王平义, 李一梅, 李文华. 低氧环境下外泌体可作为疾病的标志物[J]. 中国组织工程研究, 2021, 25(7): 1104-1108. |
[15] | 谢文佳, 夏天娇, 周卿云, 刘羽佳, 顾小萍. 小胶质细胞介导神经元损伤在神经退行性疾病中的作用[J]. 中国组织工程研究, 2021, 25(7): 1109-1115. |
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||