[1] TABANSKY I, STERN JNH. Basics of Stem Cell Biology as Applied to the Brain. In: PFAFF D, CHRISTEN Y, editors. Stem Cells in Neuroendocrinology [Internet]. Cham (CH): Springer; 2016.
[2] GENC B, BOZAN HR, GENC S, et al. Stem Cell Therapy for Multiple Sclerosis. Adv Exp Med Biol. 2019;1084:145-174.
[3] SHROFF G. A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells. Stem Cells Cloning. 2018;11: 1-11.
[4] DOUVARAS P, WANG J, ZIMMER M, et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports. 2014;3(2):250-259.
[5] CHEN B, ZHOU M, OUYANG J, et al. Long-term efficacy of autologous haematopoietic stem cell transplantation in multiple sclerosis at a single institution in China. Neurol Sci. 2012;33(4):881-886.
[6] RICE CM, KEMP K, WILKINS A, et al. Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases. Lancet. 2013;382(9899):1204-1213.
[7] ZHANG P, LIU B. Effect of autologous hematopoietic stem cell transplantation on multiple sclerosis and neuromyelitis optica spectrum disorder: a PRISMA-compliant meta-analysis. Bone Marrow Transplant. 2020;10:1038.
[8] LUESSI F, KUHLMANN T, ZIPP F. Remyelinating strategies in multiple sclerosis. Expert Rev Neurother. 2014;14(11):1315-1334.
[9] COCLITU C, CONSTANTINESCU CS, TANASESCU R. The future of multiple sclerosis treatments. Expert Rev Neurother. 2016;16(12):1341-1356.
[10] MANOUCHEHRINIA A, BEIKI O, HILLERT J. Clinical course of multiple sclerosis: A nationwide cohort study. Mult Scler. 2017;23(11): 1488-1495.
[11] OLSSON T, BARCELLOS LF, ALFREDSSON L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25-36.
[12] LUESSI F, ZIPP F, WITSCH E. Dendritic cells as therapeutic targets in neuroinflammation. Cell Mol Life Sci. 2016;73(13):2425-2450.
[13] XIAO J, YANG R, BISWAS S, et al. Neural Stem Cell-Based Regenerative Approaches for the Treatment of Multiple Sclerosis. Mol Neurobiol. 2018;55(4):3152-3171.
[14] ONTANEDA D, THOMPSON AJ, FOX RJ, et al. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet. 2017;389(10076):1357-1366.
[15] ZHANG C, CAO J, LI X, et al. Treatment of multiple sclerosis by transplantation of neural stem cells derived from induced pluripotent stem cells. Sci China Life Sci. 2016;59(9):950-957.
[16] CUASCUT FX, HUTTON GJ. Stem Cell-Based Therapies for Multiple Sclerosis: Current Perspectives. Biomedicines. 2019;7(2):26.
[17] BURMAN J, TOLF A, HÄGGLUND H, et al. Autologous haematopoietic stem cell transplantation for neurological diseases. J Neurol Neurosurg Psychiatry. 2018;89(2):147-155.
[18] LOH YS, HWANG WY, RATNAGOPAL P. Autologous haematopoietic stem cell transplantation for the treatment of multiple sclerosis. Ann Acad Med Singapore. 2007;36(6):421-426.
[19] ARRUDA LCM, DE AZEVEDO JTC, DE OLIVEIRA GLV, et al. Immunological correlates of favorable long-term clinical outcome in multiple sclerosis patients after autologous hematopoietic stem cell transplantation. Clin Immunol. 2016;169:47-57.
[20] ZEHER M, PAPP G, NAKKEN B, et al. Hematopoietic stem cell transplantation in autoimmune disorders: From immune-regulatory processes to clinical implications. Autoimmun Rev. 2017;16(8):817-825.
[21] KARNELL FG, LIN D, MOTLEY S, et al. Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clin Exp Immunol. 2017;189(3):268-278.
[22] BURMAN J, FRANSSON M, TÖTTERMAN TH, et al. T-cell responses after haematopoietic stem cell transplantation for aggressive relapsing-remitting multiple sclerosis. Immunology. 2013;140(2):211-219.
[23] DE PAULA A SOUSA A, MALMEGRIM KC, PANEPUCCI RA, et al. Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clin Sci (Lond). 2015;128(2):111-120.
[24] RADAELLI M, MERLINI A, GRECO R, et al. Autologous bone marrow transplantation for the treatment of multiple sclerosis. Curr Neurol Neurosci Rep. 2014;14(9):478.
[25] NASH RA, HUTTON GJ, RACKE MK, et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology. 2017;88(9):842-852.
[26] DAS J, SHARRACK B, SNOWDEN JA. Autologous Haematopoietic Stem Cell Transplantation in Multiple Sclerosis: a Review of Current Literature and Future Directions for Transplant Haematologists and Oncologists. Curr Hematol Malig Rep. 2019;14(2):127-135.
[27] SHARRACK B, SACCARDI R, ALEXANDER T, et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transplant. 2020;55(2):283-306.
[28] MURARO PA, MARTIN R, MANCARDI GL, et al. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol. 2017;13(7):391-405.
[29] ARDESHIRY LAJIMI A, HAGH MF, SAKI N, et al. Feasibility of cell therapy in multiple sclerosis: a systematic review of 83 studies. Int J Hematol Oncol Stem Cell Res. 2013;7(1):15-33.
[30] BURT RK, BALABANOV R, BURMAN J, et al. Effect of Nonmyeloablative Hematopoietic Stem Cell Transplantation vs Continued Disease-Modifying Therapy on Disease Progression in Patients With Relapsing-Remitting Multiple Sclerosis: A Randomized Clinical Trial. JAMA. 2019; 321(2):165-174.
[31] TOLF A, FAGIUS J, CARLSON K, et al. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol Scand. 2019;140(5):320-327.
[32] BALDASSARI LE, COHEN JA. Mesenchymal Stem Cell-derived Neural Progenitor Cells in Progressive Multiple Sclerosis: Great Expectations. EBioMedicine. 2018;29:5-6.
[33] HEATHMAN TRJ, RAFIQ QA, CHAN AKC, et al. Characterization of human mesenchymal stem cells from multiple donors and the implications for large scale bioprocess development. Biochem Eng J. 2016;108:14-23.
[34] SARKAR P, RICE CM, SCOLDING NJ. Cell Therapy for Multiple Sclerosis. CNS Drugs. 2017;31(6):453-469.
[35] BARATI S, RAGERDI KASHANI I, MORADI F, et al. Mesenchymal stem cell mediated effects on microglial phenotype in cuprizone-induced demyelination model. J Cell Biochem. 2019;120(8):13952-13964.
[36] SARGENT A, BAI L, SHANO G, et al. CNS disease diminishes the therapeutic functionality of bone marrow mesenchymal stem cells. Exp Neurol. 2017;295:222-232.
[37] WANG X, KIMBREL EA, IJICHI K, et al. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports. 2014;3(1):115-130.
[38] SHALABY SM, SABBAH NA, SABER T, et al. Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life. 2016;68(2):106-115.
[39] LI J, CHEN Y, CHEN Z, et al. Therapeutic effects of human adipose tissue-derived stem cell (hADSC) transplantation on experimental autoimmune encephalomyelitis (EAE) mice. Sci Rep. 2017;7:42695.
[40] KURTE M, BRAVO-ALEGRÍA J, TORRES A, et al. Intravenous administration of bone marrow-derived mesenchymal stem cells induces a switch from classical to atypical symptoms in experimental autoimmune encephalomyelitis. Stem Cells Int. 2015;2015:140170.
[41] STRONG AL, BOWLES AC, WISE RM, et al. Human Adipose Stromal/Stem Cells from Obese Donors Show Reduced Efficacy in Halting Disease Progression in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. Stem Cells. 2016;34(3):614-626.
[42] LOCHHEAD JJ, THORNE RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614-628.
[43] DAHBOUR S, JAMALI F, ALHATTAB D, et al. Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: Clinical, ophthalmological and radiological assessments of safety and efficacy. Version 2. CNS Neurosci Ther. 2017;23(11):866-874.
[44] FERNÁNDEZ O, IZQUIERDO G, FERNÁNDEZ V, et al. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS One. 2018; 13(5):e0195891.
[45] LUO Y, COSKUN V, LIANG A, et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell. 2015;161(5): 1175-1186.
[46] GONZALEZ R, HAMBLIN MH, LEE JP. Neural Stem Cell Transplantation and CNS Diseases. CNS Neurol Disord Drug Targets. 2016;15(8): 881-886.
[47] VOLPE G, BERNSTOCK JD, PERUZZOTTI-JAMETTI L, et al. Modulation of host immune responses following non-hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis. J Neuroimmunol. 2019;331:11-27.
[48] KOKAIA Z, LINDVALL O. Sensors of Succinate: Neural Stem Cell Grafts Fight Neuroinflammation. Cell Stem Cell. 2018;22(3):283-285.
[49] KLOSE J, SCHMIDT NO, MELMS A, et al. Suppression of experimental autoimmune encephalomyelitis by interleukin-10 transduced neural stem/progenitor cells. J Neuroinflammation. 2013;10:117.
[50] IMAMURA O, ARAI M, DATEKI M, et al. Donepezil-induced oligodendrocyte differentiation is mediated through estrogen receptors. J Neurochem. 2019:e14927.
[51] MOORE SM, KHALAJ AJ, KUMAR S, et al. Multiple functional therapeutic effects of the estrogen receptor β agonist indazole-Cl in a mouse model of multiple sclerosis. Proc Natl Acad Sci U S A. 2014;111(50): 18061-18066.
[52] SUN JJ, REN QG, XU L, et al. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice. Sci Rep. 2015;5:14235.
[53] YANG J, YAN Y, CIRIC B, et al. Evaluation of bone marrow- and brain-derived neural stem cells in therapy of central nervous system autoimmunity. Am J Pathol. 2010;177(4):1989-2001.
[54] XIE C, LI X, ZHOU X, et al. TGFβ1 transduction enhances immunomodulatory capacity of neural stem cells in experimental autoimmune encephalomyelitis. Brain Behav Immun. 2018;69:283-295.
[55] MCINTYRE LL, GREILACH SA, OTHY S, et al. Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiol Dis. 2020;140:104868.
[56] HARRIS VK, STARK J, VYSHKINA T, et al. Phase I Trial of Intrathecal Mesenchymal Stem Cell-derived Neural Progenitors in Progressive Multiple Sclerosis. EBioMedicine. 2018;29:23-30.
[57] HARDING J, MIROCHNITCHENKO O. Preclinical studies for induced pluripotent stem cell-based therapeutics. J Biol Chem. 2014;289(8): 4585-4593.
[58] XIE C, LIU YQ, GUAN YT, et al. Induced Stem Cells as a Novel Multiple Sclerosis Therapy. Curr Stem Cell Res Ther. 2016;11(4):313-320.
[59] LATERZA C, MERLINI A, DE FEO D, et al. iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nat Commun. 2013;4:2597.
[60] THIRUVALLUVAN A, CZEPIEL M, KAP YA, et al. Survival and Functionality of Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes in a Nonhuman Primate Model for Multiple Sclerosis. Stem Cells Transl Med. 2016;5(11):1550-1561.
[61] NICAISE AM, BANDA E, GUZZO RM, et al. iPS-derived neural progenitor cells from PPMS patients reveal defect in myelin injury response. Exp Neurol. 2017;288:114-121.
[62] WEINSHENKER BG, WINGERCHUK DM. Neuromyelitis Spectrum Disorders. Mayo Clin Proc. 2017;92(4):663-679.
[63] WINGERCHUK DM, BANWELL B, BENNETT JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177-189.
[64] PITTOCK SJ, LUCCHINETTI CF. Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later. Ann N Y Acad Sci. 2016;1366(1):20-39.
[65] AKAISHI T, NAKASHIMA I, TAKAHASHI T, et al. Neuromyelitis optica spectrum disorders with unevenly clustered attack occurrence. Neurol Neuroimmunol Neuroinflamm. 2019;7(1):e640.
[66] KESSLER RA, MEALY MA, LEVY M. Treatment of Neuromyelitis Optica Spectrum Disorder: Acute, Preventive, and Symptomatic. Curr Treat Options Neurol. 2016;18(1):2.
[67] KLEITER I, HELLWIG K, BERTHELE A, et al. Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol. 2012;69(2): 239-245.
[68] FU Y, YAN Y, QI Y, et al. Impact of Autologous Mesenchymal Stem Cell Infusion on Neuromyelitis Optica Spectrum Disorder: A Pilot, 2-Year Observational Study. CNS Neurosci Ther. 2016;22(8):677-685.
[69] YANG C, YANG Y, MA L, et al. Study of the cytological features of bone marrow mesenchymal stem cells from patients with neuromyelitis optica. Int J Mol Med. 2019;43(3):1395-1405.
[70] SHI K, WANG Z, LIU Y, et al. CFHR1-Modified Neural Stem Cells Ameliorated Brain Injury in a Mouse Model of Neuromyelitis Optica Spectrum Disorders. J Immunol. 2016;197(9):3471-3480.
[71] GRECO R, BONDANZA A, OLIVEIRA MC, et al. Autologous hematopoietic stem cell transplantation in neuromyelitis optica: a registry study of the EBMT Autoimmune Diseases Working Party. Mult Scler. 2015;21(2): 189-197.
[72] AOUAD P, LI J, ARTHUR C, et al. Resolution of aquaporin-4 antibodies in a woman with neuromyelitis optica treated with human autologous stem cell transplant. J Clin Neurosci. 2015;22(7):1215-1217.
[73] HOAY KY, RATNAGOPAL P. Autologous Hematopoietic Stem Cell Transplantation for the Treatment of Neuromyelitis Optica in Singapore. Acta Neurol Taiwan. 2018;27(1):26-32.
[74] BURT RK, BALABANOV R, HAN X, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation for neuromyelitis optica. Neurology. 2019;93(18):e1732-e1741.
[75] LU Z, YE D, QIAN L, et al. Human umbilical cord mesenchymal stem cell therapy on neuromyelitis optica. Curr Neurovasc Res. 2012;9(4): 250-255. |