中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (29): 4710-4716.doi: 10.12307/2024.539

• 生物材料综述 biomaterial review • 上一篇    下一篇

骨组织工程支架的制备方法研究进展

皇  磊1,王晓丽1,王思明2,鲍  鑫1,周  鑫1,王犇娣2   

  1. 1江苏海洋大学机械工程学院,江苏省连云港市  222005;2连云港市第二人民医院,江苏省连云港市  222023
  • 收稿日期:2023-10-11 接受日期:2023-11-22 出版日期:2024-10-18 发布日期:2024-03-23
  • 通讯作者: 王晓丽,工学博士,副教授,江苏海洋大学机械工程学院,江苏省连云港市 222005
  • 作者简介:皇磊,男,2001年生,江苏省淮安市人,汉族,江苏海洋大学在读硕士,主要从事增材制造方面的研究。
  • 基金资助:
    江苏海洋大学研究生科研与实践创新计划(KYCX2023-77),项目负责人:皇磊

Advance in preparation methods of bone tissue engineering scaffolds

Huang Lei1, Wang Xiaoli1, Wang Siming2, Bao Xin1, Zhou Xin1, Wang Bendi2   

  1. 1College of Mechanical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu Province, China; 2Second People’s Hospital of Lianyungang, Lianyungang 222023, Jiangsu Province, China
  • Received:2023-10-11 Accepted:2023-11-22 Online:2024-10-18 Published:2024-03-23
  • Contact: Wang Xiaoli, Doctor of Engineering, Associate professor, College of Mechanical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu Province, China
  • About author:Huang Lei, Master candidate, College of Mechanical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu Province, China
  • Supported by:
    Graduate Research and Practice Innovation Program of Jiangsu Ocean University, No. KYCX2023-77 (to HL)

摘要:


文题释义:

骨组织工程支架:是一种用于促进骨再生和修复的三维结构,它可以提供机械支撑和生物活性,为细胞附着、增殖和分化提供合适的环境。
增材制造技术:也称为3D打印,通过逐层加工材料来建立三维实体。与传统的减材制造(如切割、铸造等)不同,增材制造技术通过将材料逐层叠加,直接将数字模型转化为实体产品,具有更高的制造自由度。


背景:由于自体骨源的数量较少,且使用异体骨会产生免疫排斥、疾病扩散等危险,因而人造骨材料在当今的骨移植中起到了不可替代的作用。伴随着功能定制、生物相容性的要求和生物可降解材料的出现,已经出现了多样化的生物材料和多种制备方法。

目的:概述目前应用于骨组织工程支架的制备方法,总结各种制备方法的优缺点、研究现状与进展。
方法:使用计算机在中国知网、万方数据、PubMed及ScienceDirect数据库检索2008年1月至2023年8月关于骨组织工程支架方面的文献,以“Tissue engineering,Bone scaffold,Gas foaming,Cryotropic gelation,Additive manufacturing等”为英文检索词,以“组织工程,骨支架,气体发泡,低温凝胶,增材制造等”为中文检索词,排除无关和重复性研究,共保留80篇文献进行了总结归纳。

结果与结论:①相较于传统支架的制备工艺,近年来新兴的增材制造和静电纺丝技术在用于组织工程的复杂结构如骨和软骨的生产中,表现出了巨大的潜力。②增材制造方法除了在速度、精度和使用的材料范围方面更具优势,还提供了制造高度复杂的几何形状和拓扑优化结构的可行性,实现精确调节和构造结构的高重复性。③静电纺丝是生产一系列纤维垫的最具适应性和前景的技术之一。通过静电纺丝产生的纳米纤维支架是与细胞质基质微观结构非常惊人地相似的生物材料。④目前在陶瓷材料上以羟基磷灰石和磷酸三钙应用性能较好,在高分子材料上目前材料种类多样,以生物相容性优良的材料应用较多。⑤因此,在骨组织工程支架材料的选择上应更好地了解它们的特性,避免复杂化,以生产更具增强功能的支架。然而,目前报告的绝大多数文献对临床的适用性都是探索性的,具体适合哪种疾病的治疗还有待检验。未来骨支架的发展需体现在这几个方面:与缺失骨相匹配的力学性能、降解速率可控、促进骨再生力强以及附有特定功能。

https://orcid.org/0009-0002-4211-1318(皇磊);https://orcid.org/0000-0002-3640-1143(王晓丽)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 组织工程, 骨支架, 气体发泡, 低温凝胶, 增材制造, 静电纺丝, 粘合剂喷射, 选择性激光烧结, 熔融沉积成型, 立体光刻, 数字光处理

Abstract: BACKGROUND: Due to the small number of autologous bone sources and the risk of immune rejection and disease spread caused by the use of allogeneic bone, artificial bone materials have played an irreplaceable role in bone transplantation today. Along with functional customization, biocompatibility requirements, and the emergence of biodegradable materials, a variety of biomaterials and a variety of preparation methods have emerged.
OBJECTIVE: To summarize the preparation methods of scaffolds used in bone tissue engineering, and the advantages and disadvantages, research status and progress of various preparation methods.
METHODS: A computer search was conducted on CNKI, WanFang Data, PubMed, and ScienceDirect databases for literature related to bone tissue engineering scaffold from January 2008 to August 2023. Chinese and English search terms were “tissue engineering, bone scaffold, gas foaming, cryotropic gelation, additive manufacturing”. After excluding irrelevant and repetitive studies, a total of 80 articles were retained for summary.
RESULTS AND CONCLUSION: (1) Compared with the traditional preparation process of scaffolds, the emerging additive manufacturing and electrospinning technologies have shown great potential in the production of complex structures such as bone and cartilage for tissue engineering in recent years, demonstrating enormous potential. (2) In addition to the advantages of speed, precision and the range of materials used, additive manufacturing methods also provide the feasibility of manufacturing highly complex geometry and topologically optimized structures, achieving precise adjustment and high repeatability of the structure. (3) Electrospinning is one of the most adaptable and promising technologies for the production of a series of fiber mats. The nanofiber scaffolds produced by electrospinning are biomaterials with surprisingly similar microstructures to the cytoplasmic matrix. (4) At present, hydroxyapatite and tricalcium phosphate are the best in ceramic materials, and there are a variety of materials in polymer materials, with excellent biocompatibility. (5) Therefore, the selection of materials should be based on a better understanding of their properties, avoiding complexity, and producing more enhanced scaffolds. However, most of the literature reports so far are exploratory in terms of clinical applicability, and the specific diseases for which they are suitable for treatment remain to be tested. The future development of bone scaffolds is reflected in the following aspects: mechanical properties matching the missing bone, controllable degradation rate, strong ability to promote bone regeneration, and specific functions.

Key words: tissue engineering, bone scaffold, gas foaming, cryotropic gelation, additive manufacturing, electrospinning, binder jetting, selective laser sintering, fused deposition molding, stereolithography, digital light processing

中图分类号: