中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (29): 4717-4725.doi: 10.12307/2024.540
• 生物材料综述 biomaterial review • 上一篇 下一篇
李兆进1,郑鹏程2,孔健达2,朱腾旗1,姜付高1
收稿日期:
2023-10-20
接受日期:
2023-11-20
出版日期:
2024-10-18
发布日期:
2024-03-23
通讯作者:
姜付高,博士,教授,博士生导师,曲阜师范大学体育学部,山东省济宁市 272000
作者简介:
李兆进,男,1977年生,山东省青岛市人,汉族,曲阜师范大学体育科学学院在读博士,副教授,硕士生导师,主要从事体育教学和体育管理研究和工作。
基金资助:
Li Zhaojin1, Zheng Pengcheng2, Kong Jianda2, Zhu Tengqi1, Jiang Fugao1
Received:
2023-10-20
Accepted:
2023-11-20
Online:
2024-10-18
Published:
2024-03-23
Contact:
Jiang Fugao, PhD, Professor, PhD supervisor, School of Physical Education, Qufu Normal University, Jining 272000, Shandong Province, China
About author:
Li Zhaojin, PhD candidate, Associate professor, Master’s supervisor, School of Physical Education, Qufu Normal University, Jining 272000, Shandong Province, China
Supported by:
摘要:
文题释义:
PGC-1α:中文全称为过氧化物酶体增殖物激活受体γ共激活因子1α,是一种转录共激活因子,主要在肝脏、肌肉和脑等组织中表达,能够调节细胞能量代谢和线粒体功能,并参与调节血糖代谢、脂肪酸氧化和肌肉适应性等生物学过程,其功能受多种生理和环境因素的调控,包括运动、饥饿、冷暴露和泌乳酸。
背景:过氧化物酶体增殖物激活受体γ共激活因子1α(peroxisome proliferators-activated receptors gamma co-activator 1α,PGC-1α)和衰老密切相关,且其在运动抗衰老中发挥着重要的调控作用,但缺乏从不同组织和器官视角下PGC-1α在运动抗衰老中作用的相关综述。
目的:详细回顾PGC-1α在运动抗衰老中的作用,并从不同组织和器官的角度探讨其调控情况。结果与结论:①PGC-1α是一个重要的转录共激活因子,在维持线粒体功能、调控能量代谢和适应不同代谢需求方面发挥着关键的调节作用。②在线粒体衰老中的多种功能,在多种细胞类型中的调节作用,在多种细胞类型中发挥着重要的调节作用,与炎症途径和氧化还原控制的关系及其相关蛋白修饰和表观遗传变化。③PGC-1α的表达水平能够被运动训练提高,并通过调节线粒体生物发生、能量代谢和抗氧化应激等途径发挥积极的作用,其在运动改善脂肪组织衰老、心血管老化、神经系统老化、肾脏衰老、骨骼肌衰老和肝脏老化等中发挥重要作用。④课题组专家建议未来研究方向包括探索不同类型、强度和时长的运动对PGC-1α表达的调节影响,研究PGC-1α的蛋白修饰和表观遗传变化的调节机制,以及加强对PGC-1α在不同衰老相关疾病中的作用机制的研究。
https://orcid.org/0009-0000-0977-801X(李兆进);https://orcid.org/0000-0002-7674-2372(姜付高)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
李兆进, 郑鹏程, 孔健达, 朱腾旗, 姜付高. 基于不同组织和器官角度回顾PGC-1α在运动抗衰老中的作用[J]. 中国组织工程研究, 2024, 28(29): 4717-4725.
Li Zhaojin, Zheng Pengcheng, Kong Jianda, Zhu Tengqi, Jiang Fugao. Review of PGC-1α role in exercise anti-aging in different tissues and organs[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(29): 4717-4725.
[1] OKA SI, SABRY AD, CAWLEY KM, et al. Multiple levels of PGC-1α dysregulation in heart failure. Front Cardiovasc Med. 2020;7:2. [2] KONG S, CAI B, NIE Q. PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis. Mol Genet Genomics. 2022;297(3):621-633. [3] Di W, LV J, JIANG S, et al. PGC-1: the energetic regulator in cardiac metabolism. Curr Issues Mol Biol. 2018;28:29-46. [4] KUCZYNSKA Z, METIN E, LIPUT M, et al. Covering the role of PGC-1α in the nervous system. Cells. 2021;11(1):111. [5] DUMESIC PA, EGAN DF, Gut P, et al. An evolutionarily conserved uORF regulates PGC1α and oxidative metabolism in mice, flies, and bluefin tuna. Cell Metab. 2019;30(1):190-200.e6. [6] GREVENDONK L, CONNELL N J, McCrum C, et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nature communications. 2021;12(1):4773. [7] LEVEILLE M, BESSE-PATIN A, JOUVET N, et al. PGC-1α isoforms coordinate to balance hepatic metabolism and apoptosis in inflammatory environments. Mol Metab. 2020;34:72-84. [8] HALLING JF, PILEGAARD H. PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab. 2020;45(9): 927-936. [9] RIUS-PEREZ S, TORRES-CUEVAS I, MILLAN I, et al. PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxid Med Cell Longev. 2020;2020:1452696. [10] CHEN H, FAN W, HE H, et al. PGC-1: a key regulator in bone homeostasis. J Bone Miner Metab. 2022;40(1):1-8. [11] NETO IVS, PINTO AP, MUNOZ VR, et al. Pleiotropic and multi-systemic actions of physical exercise on PGC-1α signaling during the aging process. Ageing Res Rev. 2023;87:101935. [12] CHENG CF, KU HC, LIN H. PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci. 2018;19(11):3447. [13] LEE G, UDDIN MJ, KIM Y, et al. PGC‐1α, a potential therapeutic target against kidney aging. Aging Cell, 2019;18(5):e12994. [14] CHRISTIANSEN D, MURPHY RM, BANGSBO J, et al. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol (Oxf). 2018;223(2):e13045. [15] BAE JH, JO A, CHO SC, et al. Farnesol prevents aging-related muscle weakness in mice through enhanced farnesylation of Parkin-interacting substrate. Sci Transl Med. 2023;15(711):eabh3489. [16] GARCIA S, NISSANKA N, MARECO EA, et al. Overexpression of PGC‐1α in aging muscle enhances a subset of young‐like molecular patterns. Aging cell. 2018;17(2):e12707. [17] KANG J, WANG Y, WANG D. Endurance and resistance training mitigate the negative consequences of depression on synaptic plasticity through different molecular mechanisms. Int J Neurosci. 2020;130(6):541-550. [18] MONTORI-GRAU M, AGUILAR-RECARTE D, ZAREI M, et al. Endoplasmic reticulum stress downregulates PGC-1α in skeletal muscle through ATF4 and an mTOR-mediated reduction of CRTC2. Cell Commun Signal. 2022;20(1):53. [19] YE L, LI M, WANG Z, et al. Depression of mitochondrial function in the rat skeletal muscle model of myofascial pain syndrome is through down-regulation of the AMPK-PGC-1α-SIRT3 axis. J Pain Res. 2020;13:1747-1756. [20] YIN F, ZHANG J, LIU Y, et al. Basolateral amygdala SIRT1/PGC-1α mitochondrial biogenesis pathway mediates morphine withdrawal-associated anxiety in mice. Int J Neuropsychopharmacol. 2022;25(9):774-785. [21] 张丽,何俊,金虹,等.HO-1/PGC-1α通路在调控线粒体氧化应激中的作用[J].中国药理学通报,2022,38(8):1137-1141. [22] SHI Y, SHU ZJ, WANG H, et al. Altered expression of hepatic β-adrenergic receptors in aging rats: implications for age-related metabolic dysfunction in liver. Am J Physiol Regul Integr Comp Physiol. 2018;314(4):R574-R583. [23] DELRIO-LORENZO A, ROJO-RUIZ J, ALONSO MT, et al. Sarcoplasmic reticulum Ca2+ decreases with age and correlates with the decline in muscle function in Drosophila. J Cell Sci. 2020;133(6):jcs240879. [24] LI W, CAO J, WANG X, et al. Ferruginol restores SIRT1-PGC-1α-mediated mitochondrial biogenesis and fatty acid oxidation for the treatment of DOX-induced cardiotoxicity. Front Pharmacol. 2021;12:773834. [25] ZHU Z, HU J, CHEN Z, et al. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism. 2022;131:155194. [26] WONDMKUN YT. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab Syndr Obes. 2020;13:3611-3616. [27] FOREMAN NA, HESSE AS, JI LL. Redox signaling and sarcopenia: searching for the primary suspect. Int J Mol Sci. 2021;22(16):9045. [28] ABU SHELBAYEH O, ARROUM T, MORRIS S, et al. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response. Antioxidants. 2023;12(5):1075. [29] FU H, LIU H. Deletion of toll-like receptor 4 ameliorates diabetic retinopathy in mice. Arch Phys Biochem. 2023;129(2):519-525. [30] HUANG DD, FAN SD, CHEN XY, et al. Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner. Exp Gerontol. 2019;119:61-73. [31] KELEHER MR, ERICKSON K, SMITH HA, et al. Placental insulin/IGF-1 signaling, PGC-1α, and inflammatory pathways are associated with metabolic outcomes at 4–6 years of age: the ECHO healthy start cohort. Diabetes. 2021;70(3): 745-751. [32] XU H, DU X, XU J, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18(2):e3000603. [33] BESSE-PATIN A, JEROMSON S, LEVESQUE-DAMPHOUSSE P, et al. PGC1A regulates the IRS1: IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proc Natl Acad Sci U S A. 2019;116(10):4285-4290. [34] SEKSARIA S, MEHAN S, DUTTA B J, et al. Oxymatrine and insulin resistance: Focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF‐β signaling pathway. J Biochem Mol Toxicol. 2023;37(5):e23330. [35] 王少堃,王世强,王一杰,等.骨骼肌介导的运动神经保护效应:作用途径和分子机制[J].中国体育科技,2023,59(4):58-66. [36] KIM SB, HEO JI, KIM H, et al. Acetylation of PGC1α by histone deacetylase 1 downregulation is implicated in radiation-induced senescence of brain endothelial cells. J Gerontol A Biol Sci Med Sci. 2019;74(6):787-793. [37] ZIA A, SAHEBDEL F, FARKHONDEH T, et al. A review study on the modulation of SIRT1 expression by miRNAs in aging and age-associated diseases. Int J Biol Macromol. 2021;188:52-61. [38] MAHBOOBIFARD F, POURGHOLAMI MH, JORJANI M, et al. Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother. 2022;156:113808. [39] CANTO C, GERHART-HINES Z, FEIGE JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056-1060. [40] OU MY, ZHANG H, TAN PC, et al. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 2022;13(4):300. [41] MACEDO APA, DA SILVA ASR, MUNOZ VR, et al. Mitochondrial dysfunction plays an essential role in remodeling aging adipose tissue. Mech Ageing Dev. 2021;200:111598. [42] ZIEGLER AK, DAMGAARD A, MACKEY AL, et al. An anti-inflammatory phenotype in visceral adipose tissue of old lean mice, augmented by exercise. Sci Rep. 2019;9(1):12069. [43] THIRUPATHI A, DA SILVA PIERI BL, QUEIROZ JAMP, et al. Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats. J Physiol Biochem. 2019;75(1): 101-108. [44] SUN L, LI FH, HAN C, et al. Alterations in mitochondrial biogenesis and respiratory activity, inflammation of the senescence-associated secretory phenotype, and lipolysis in the perirenal fat and liver of rats following lifelong exercise and detraining. FASEB J. 2021;35(10):e21890. [45] 翁锡全,王朝格,林宝璇,等.低温下运动对肥胖大鼠白色脂肪棕色化及相关调节因子表达的影响[J].中国运动医学杂志,2021,40(1):38-45. [46] 付鹏宇,龚丽景,段佳妍,等.低氧运动对肥胖小鼠脂肪UCP-1和PGC-1α表达的影响[J].中国运动医学杂志,2015,34(11):1070-1075. [47] BAYOD S, DEL VALLE J, LALANZA JF, et al. Long-term physical exercise induces changes in sirtuin 1 pathway and oxidative parameters in adult rat tissues. Exp Gerontol. 2012;47(12):925-935. [48] CHEN WK, TSAI YL, SHIBU MA, et al. Exercise training augments Sirt1-signaling and attenuates cardiac inflammation in D-galactose induced-aging rats. Aging (Albany NY). 2018;10(12):4166-4174. [49] YEO HS, LIM JY. Effects of different types of exercise training on angiogenic responses in the left ventricular muscle of aged rats. Exp Gerontol. 2022; 158:111650. [50] GU Q, WANG B, ZHANG XF, et al. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats. Exp Gerontol. 2014;56:37-44. [51] GIOSCIA-RYAN RA, BATTSON ML, CUEVAS LM, et al. Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice. Aging (Albany NY). 2016;8(11):2897-2914. [52] MAHDAVI N, JOUKAR S, NAJAFIPOUR H, et al. Promotion of aging heart function and its redox balance following hind-limb blood flow restriction plus endurance exercise training in rats: klotho and PGC1-α as involving candidate molecules. Pflugers Arch. 2022;474(7):699-708. [53] BOTTA A, LAHER I, BEAM J, et al. Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts. PLoS One. 2013;8(8):e70248. [54] MCMEEKIN LJ, FOX SN, BOAS SM, et al. Dysregulation of PGC-1α-dependent transcriptional programs in neurological and developmental disorders: therapeutic challenges and opportunities. Cells. 2021;10(2):352. [55] LIN JY, KUO WW, BASKARAN R, et al. Swimming exercise stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus [published correction appears in Aging (Albany NY). Aging (Albany NY). 2020;12(8):6852-6864. [56] E L, BURNS JM, SWERDLOW RH. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol Aging. 2014;35(11):2574-2583. [57] GUSDON AM, CALLIO J, DISTEFANO G, et al. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp Gerontol. 2017;90:1-13. [58] KARLSSON L, GONZALEZ-ALVARADO MN, MOTALLEB R, et al. Constitutive PGC-1α overexpression in skeletal muscle does not contribute to exercise-induced neurogenesis. Mol Neurobiol. 2021;58(4):1465-1481. [59] CHEN Z, YUAN Z, YANG S, et al. Brain energy metabolism: astrocytes in neurodegenerative diseases. CNS Neurosci Ther. 2023;29(1):24-36. [60] SVENSSON K, SCHNYDER S, CARDEL B, et al. Loss of renal tubular PGC-1α exacerbates diet-induced renal steatosis and age-related urinary sodium excretion in mice. PLoS One. 2016;11(7):e0158716. [61] TRAN MT, ZSENGELLER ZK, BERG AH, et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature. 2016;531(7595): 528-532. [62] YUAN L, YUAN Y, LIU F, et al. PGC-1α alleviates mitochondrial dysfunction via TFEB-mediated autophagy in cisplatin-induced acute kidney injury. Aging (Albany NY). 2021;13(6):8421-8439. [63] HAN SH, WU MY, NAM BY, et al. PGC-1α protects from notch-induced kidney fibrosis development. J Am Soc Nephrol. 2017;28(11):3312-3322. [64] LIU HW, KAO HH, WU CH. Exercise training upregulates SIRT1 to attenuate inflammation and metabolic dysfunction in kidney and liver of diabetic db/db mice. Nutr Metab (Lond). 2019;16:22. [65] TANG LX, WANG B, WU ZK. Aerobic exercise training alleviates renal injury by interfering with mitochondrial function in type-1 diabetic mice. Med Sci Monit. 2018;24:9081-9089. [66] SU Z, KLEIN JD, DU J, et al. Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle. Am J Physiol Renal Physiol. 2017;312(6):F1128-F1140. [67] RIBEIRO MBT, GUZZONI V, HORD JM, et al. Resistance training regulates gene expression of molecules associated with intramyocellular lipids, glucose signaling and fiber size in old rats. Sci Rep. 2017;7(1):8593. [68] HUANG CC, WANG T, TUNG YT, et al. Effect of exercise training on skeletal muscle SIRT1 and PGC-1α expression levels in rats of different age. Int J Med Sci. 2016;13(4):260-270. [69] KOLTAI E, HART N, TAYLOR AW, et al. Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am J Physiol Regul Integr Comp Physiol. 2012;303(2):R127-R134. [70] 许杰,黄巧婷,谢敏豪,等.不同强度运动对大鼠骨骼肌AMPK/PGC-1α信号通路的影响[J].成都体育学院学报,2018,44(4):121-126. [71] 吴菊花,杨亚南,翁锡全,等.低氧运动干预营养性肥胖模型大鼠骨骼肌能量代谢的变化[J].中国组织工程研究,2022,26(29):4598-4604. [72] 冯丽丽,李博文,田振军.运动激活SESN2/AMPK/PGC-1α通路改善心梗诱导的骨骼肌减少[J].北京体育大学学报,2021,44(5):128-137. [73] GILL JF, SANTOS G, SCHNYDER S, et al. PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice. Aging Cell. 2018;17(1):e12697. [74] CHRISTENSEN NM, RINGHOLM S, BUCH BT, et al. Muscle PGC-1α modulates hepatic mitophagy regulation during aging. Exp Gerontol. 2023;172:112046. [75] KIM Y, TRIOLO M, HOOD D A. Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxid Med Cell Longev. 2017;2017:3165396. [76] 殷彰冶,郜卫峰.耐力运动调控青壮年健康人群骨骼肌PGC-1α表达研究进展[J].中国运动医学杂志,2022,41(9):725-736. [77] KRISTENSEN CM, BRANDT CT, RINGHOLM S, et al. PGC-1α in aging and lifelong exercise training-mediated regulation of UPR in mouse liver. Exp Gerontol. 2017;98:124-133. [78] 李良,徐建方,冯连世,等.有氧运动和抗阻运动训练对肥胖大鼠肝脏FGF21信号通路的影响[J].中国运动医学杂志,2018,37(10):847-856. [79] BIANCHI A, MARCHETTI L, HALL Z, et al. Moderate exercise inhibits age-related inflammation, liver steatosis, senescence, and tumorigenesis. J Immunol. 2021;206(4):904-916. [80] 陈晓光,徐晓阳,薛博洋,等.耐力运动对去卵巢大鼠肝脏SIRT1和PGC-1α蛋白表达的影响[J].北京体育大学学报,2013,36(4):62-67. [81] 马国栋,董杰,刘艳环.耐力训练预防急性酒精性肝损伤机制:线粒体生物合成[J].上海体育学院学报,2012,36(1):73-77. [82] KHODABANDEH M, PEERI M, AZARBAYJANI MA, et al. Effect of resistance exercise and liposomal vitamin C on some factors of mitochondrial dynamics and biogenesis. Complement Med J. 2021;11(1):82-97. [83] 邵长专,江红轲.耐力训练纠正高脂饮食相关的非酒精性脂肪肝大鼠肝脏线粒体功能紊乱探讨[J].山东体育学院学报,2019,35(2):73-81. |
[1] | 吴 菁, 姚英策, 杨晓巍, 薛博士, 赵建斌, 杨 辰, 栾天峰, 周志鹏. 肌力训练与神经肌肉电刺激干预髌股关节痛患者下肢功能和生物力学的变化[J]. 中国组织工程研究, 2024, 28(9): 1365-1371. |
[2] | 余伟杰, 刘爱峰, 陈继鑫, 郭天赐, 贾易臻, 冯汇川, 杨家麟. 机器学习在腰椎间盘突出症诊治中的优势和应用策略[J]. 中国组织工程研究, 2024, 28(9): 1426-1435. |
[3] | 杨玉芳, 杨芷姗, 段棉棉, 刘毅恒, 唐正龙, 王 宇. 促红细胞生成素在骨组织工程中的应用及前景[J]. 中国组织工程研究, 2024, 28(9): 1443-1449. |
[4] | 陈凯佳, 刘景云, 曹 宁, 孙建波, 周 燕, 梅建国, 任 强. 组织工程技术在股骨头坏死治疗中的应用及前景[J]. 中国组织工程研究, 2024, 28(9): 1450-1456. |
[5] | 王 继, 张 敏, 李文博, 杨中亚, 张 龙. 有氧运动对2型糖尿病大鼠糖脂代谢、骨骼肌炎症和自噬的影响[J]. 中国组织工程研究, 2024, 28(8): 1200-1205. |
[6] | 刘 鑫, 胡 满, 赵文杰, 张 钰, 孟 博, 杨 盛, 彭 晴, 张 亮, 王静成. 镉暴露激活PI3K/Akt信号通路诱导椎间盘纤维环细胞衰老[J]. 中国组织工程研究, 2024, 28(8): 1217-1222. |
[7] | 周邦瑜, 李 杰, 阮玉山, 耿福能, 李绍波. 美洲大蠊研粉干预脊髓半横断大鼠运动功能和自噬蛋白Beclin-1的表达[J]. 中国组织工程研究, 2024, 28(8): 1223-1228. |
[8] | 阮 蓉, 娄旭佳, 金其贯, 章立冰, 徐 尚, 胡玉龙. 白藜芦醇可调控运动性疲劳大鼠的糖异生[J]. 中国组织工程研究, 2024, 28(8): 1229-1234. |
[9] | 娄 国, 张 艳, 付常喜. 内皮型一氧化氮合酶在运动预适应改善心肌缺血-再灌注损伤中的作用[J]. 中国组织工程研究, 2024, 28(8): 1283-1288. |
[10] | 林泽玉, 徐 林. 痛风致骨破坏机制的研究与进展[J]. 中国组织工程研究, 2024, 28(8): 1295-1300. |
[11] | 王伟庆, 周 越. 慢性炎症调控脂肪组织的纤维化[J]. 中国组织工程研究, 2024, 28(8): 1307-1312. |
[12] | 梅静怡, 刘 江, 肖 聪, 刘 鹏, 周浩浩, 林展翼. 组织工程血管构建过程中平滑肌细胞增殖变化及代谢模式[J]. 中国组织工程研究, 2024, 28(7): 1043-1049. |
[13] | 王姗姗, 舒 晴, 田 峻. 物理因子促进干细胞的成骨分化[J]. 中国组织工程研究, 2024, 28(7): 1083-1090. |
[14] | 潘小龙, 樊飞燕, 应春苗, 刘飞祥, 张运克. 中药抑制间充质干细胞衰老的作用及机制[J]. 中国组织工程研究, 2024, 28(7): 1091-1098. |
[15] | 徐灿丽, 何文星, 汪 磊, 吴芳婷, 王佳慧, 段雪琳, 赵铁建, 赵 斌, 郑 洋. 肝脏类器官研究的文献计量学分析[J]. 中国组织工程研究, 2024, 28(7): 1099-1104. |
1.1.5 检索策略 运用布尔逻辑运算符“OR”和“AND”分别将检索词连接进行检索。以PubMed和中国知网数据库为例,文献检索的详细策略见图1。
1.3 文献质量评价和数据的提取 数据库共检索到文献2 889篇,严格按照纳入和排除标准进行筛选,最终纳入文献83篇,包括英文文献71篇,其中Web of Science和PubMed均71篇(重复);中文文献12篇,其中中国知网、万方及维普数据库均12篇(重复)。文献筛选流程图见图2。
#br#
文题释义:
PGC-1α:中文全称为过氧化物酶体增殖物激活受体γ共激活因子1α,是一种转录共激活因子,主要在肝脏、肌肉和脑等组织中表达,能够调节细胞能量代谢和线粒体功能,并参与调节血糖代谢、脂肪酸氧化和肌肉适应性等生物学过程,其功能受多种生理和环境因素的调控,包括运动、饥饿、冷暴露和泌乳酸。该综述基于不同人体组织和器官的视角,详细回顾了PGC-1α在运动抗衰老中的作用。主要内容包括PGC-1α的定义和功能、PGC-1α与衰老的关系,以及PGC-1α在运动改善不同组织和器官衰老中的作用。通过这样的深入研究,能够更好地理解PGC-1α在衰老调控中的作用机制,并为在不同组织和器官中寻找抗衰老和预防相关疾病的干预策略提供新思路和指导。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||