中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (22): 3517-3523.doi: 10.12307/2024.531

• 水凝胶材料Hydrogel materials • 上一篇    下一篇

甲基丙烯酰化透明质酸/脱细胞华通胶水凝胶支架的制备与表征

袁  勋1,2,丁振罡1,付力伟2,吴  江2,郑亚哲1,2,张智超2,田广招2,眭  翔2,刘舒云2,郭全义1,2   

  1. 1贵州医科大学附属医院骨科,贵州省贵阳市  550004;2解放军总医院第一医学中心骨科研究所,骨科再生医学北京市重点实验室,全军骨科战创伤重点实验室,北京市  100853
  • 收稿日期:2023-09-14 接受日期:2023-11-02 出版日期:2024-08-08 发布日期:2024-01-20
  • 通讯作者: 郭全义,博士,主任医师,教授,贵州医科大学附属医院骨科,贵州省贵阳市 550004;中国人民解放军总医院第一医学中心骨科研究所,骨科再生医学北京市重点实验室,全军骨科战创伤重点实验室,北京市 100853
  • 作者简介:袁勋,男,1993年生,贵州省贵阳市人,汉族,贵州医科大学在读硕士,主要从事软骨组织工程相关方向的研究。
  • 基金资助:
    国家重点研发计划课题项目(2019YFA0110600),项目负责人:郭全义

Preparation and characterization of methacryloylated hyaluronic acid/acellular Wharton’s jelly composite hydrogel scaffold

Yuan Xun1, 2, Ding Zhengang1, Fu Liwei2, Wu Jiang2, Zheng Yazhe1, 2, Zhang Zhichao2, Tian Guangzhao2, Sui Xiang2, Liu Shuyun2, Guo Quanyi1, 2   

  1. 1Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; 2Institute of Orthopedics, First Medical Center, General Hospital of Chinese PLA, Beijing Key Laboratory of Orthopedic Regenerative Medicine, Military Key Laboratory of Orthopedic Warfare Trauma, Beijing 100853, China 
  • Received:2023-09-14 Accepted:2023-11-02 Online:2024-08-08 Published:2024-01-20
  • Contact: Guo Quanyi, MD, Chief physician, Professor, Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Institute of Orthopedics, First Medical Center, General Hospital of Chinese PLA, Beijing Key Laboratory of Orthopedic Regenerative Medicine, Military Key Laboratory of Orthopedic Warfare Trauma, Beijing 100853, China
  • About author:Yuan Xun, Master candidate, Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Institute of Orthopedics, First Medical Center, General Hospital of Chinese PLA, Beijing Key Laboratory of Orthopedic Regenerative Medicine, Military Key Laboratory of Orthopedic Warfare Trauma, Beijing 100853, China
  • Supported by:
    National Key Research and Development Plan Project, No. 2019YFA0110600 (to GQY)

摘要:


文题释义:

甲基丙烯酰化透明质酸:是采用甲基丙烯酸酐对透明质酸进行改性得到的一种改性透明质酸水凝胶,含有化学活性取代基,可通过紫外线照射快速聚合,具有良好的可复制性和理化性能可调节特性,被视为良好的光固化打印生物材料。
脱细胞华通胶:是由人脐带剥离血管及表面被膜后得到的胶冻样组织,具有与软骨组织相似的组成和功能,被认为是组织工程软骨的潜在支架材料。


背景:随着组织工程为关节软骨损伤修复这一世界难题带来了新的希望,构建成分仿生的光固化3D打印水凝胶支架对软骨组织工程具有重要意义。

目的:通过数字光处理3D打印技术构建成分仿生的甲基丙烯酰化透明质酸/脱细胞华通胶水凝胶支架,评价其生物相容性。
方法:从人脐带中分离提取华通胶组织后进行脱细胞处理,冷冻干燥后磨成粉末,溶于PBS中制备50 g/L的脱细胞华通胶溶液。制备甲基丙烯酰化透明质酸,冻干后溶于PBS中制备50 g/L的甲基丙烯酰化透明质酸溶液。将脱细胞华通胶溶液与甲基丙烯酰化透明质酸溶液以体积比1∶1混合,加入光引发剂后作为生物墨水。通过数字光处理3D打印技术分别制备甲基丙烯酰化透明质酸水凝胶支架(记为HAMA水凝胶支架)与甲基丙烯酰化透明质酸/脱细胞华通胶水凝胶支架(记为HAMA/WJ水凝胶支架),表征支架的微观结构、溶胀性能、生物相容性与促软骨分化性能。

结果与结论:①扫描电镜下见两组支架均呈三维立体的网状结构,其中HAMA/WJ水凝胶支架纤维连接更加均匀;两组支架均在10 h内达到溶胀平衡,HAMA/WJ水凝胶支架的平衡溶胀比低于HAMA水凝胶支架(P < 0.05)。②CCK-8实验显示相较于HAMA水凝胶支架,HAMA/WJ水凝胶支架可促进骨髓间充质干细胞的增殖;死活染色显示骨髓间充质干细胞在两组支架上生长良好,并且HAMA/WJ水凝胶支架上的细胞立体分布均匀、细胞数量更多;鬼笔环肽染色显示相较于HAMA水凝胶支架,HAMA/WJ水凝胶支架上的骨髓间充质干细胞黏附与铺展更佳。③将骨髓间充质干细胞接种于两组支架后进行成软骨诱导培养,qRT-PCR检测结果显示,HAMA/WJ水凝胶支架组聚集蛋白聚糖、SOX9、Ⅱ型胶原mRNA表达量均高于HAMA水凝胶支架组(P < 0.05,P < 0.01)。④结果表明,数字光处理3D生物打印HAMA/WJ水凝胶支架可促进骨髓间充质干细胞的增殖、黏附及成软骨分化。

https://orcid.org/0009-0003-2356-399X(袁勋)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 华通胶, 甲基丙烯酰化透明质酸, 水凝胶, 支架, 数字光处理3D打印, 软骨损伤, 骨髓间充质干细胞, 组织工程

Abstract: BACKGROUND: As tissue engineering brings new hope to the worldwide problem of articular cartilage repair, the construction of light-curing 3D printed hydrogel scaffolds with biomimetic composition is of great significance for cartilage tissue engineering. 
OBJECTIVE: To construct a biomimetic methacryloylated hyaluronic acid/acellular Wharton’s jelly composite hydrogel scaffold by digital light processing 3D printing technology, and to evaluate its biocompatibility. 
METHODS: Wharton’s jelly was isolated and extracted from human umbilical cord, then decellulated, freeze-dried, ground into powder, and dissolved in PBS to prepare 50 g/L acellular Wharton’s jelly solution. Methylallylated hyaluronic acid was prepared, lyophilized and dissolved in PBS to prepare 50 g/L methylallylated hyaluronic acid solution. Acellular Wharton’s jelly solution was mixed with methacrylyacylated hyaluronic acid solution at a volume ratio of 1:1, and was used as bio-ink after adding photoinitiator. Methylacrylylated hyaluronic acid hydrogel scaffolds (labeled as HAMA hydrogel scaffolds) and methylacrylylated hyaluronic acid/acellular Wharton’s jelly gel scaffolds (labeled as HAMA/WJ hydrogel scaffolds) were prepared by digital light processing 3D printing technology, and the microstructure, swelling performance, biocompatibility, and cartilage differentiation performance of the scaffolds were characterized. 
RESULTS AND CONCLUSION: (1) Under scanning electron microscope, the two groups of scaffolds showed a three-dimensional network structure, and the fiber connection of HAMA/WJ hydrogel scaffold was more uniform. Both groups achieved swelling equilibrium within 10 hours, and the equilibrium swelling ratio of HAMA/WJ hydrogel scaffold was lower than that of HAMA hydrogel scaffold (P < 0.05). (2) CCK-8 assay showed that HAMA/WJ hydrogel scaffold could promote the proliferation of bone marrow mesenchymal stem cells compared with HAMA hydrogel scaffold. Dead/live staining showed that bone marrow mesenchymal stem cells grew well on the two groups of scaffolds, and the cells on the HAMA/WJ hydrogel scaffolds were evenly distributed and more cells were found. Phalloidine staining showed better adhesion and spread of bone marrow mesenchymal stem cells in HAMA/WJ hydrogel scaffold than in HAMA. (3) Bone marrow mesenchymal stem cells were inoculated into the two groups for chondrogenic induction culture. The results of qRT-PCR showed that the mRNA expressions of agglutinoglycan, SOX9 and type II collagen in the HAMA/WJ hydrogel scaffold group were higher than those in the HAMA hydrogel scaffold group 
(P < 0.05, P < 0.01). (4) These findings indicate that the digital light processing 3D bioprinting HAMA/WJ hydrogel scaffold can promote the proliferation, adhesion, and chondrogenic differentiation of bone marrow mesenchymal stem cells. 

Key words: Wharton’s jelly, methylacryloyl hyaluronic acid, hydrogel, scaffold, digital light processing 3D printing, cartilage injury, bone marrow mesenchymal stem cell, tissue engineering

中图分类号: