[1] FINGERHUT LA, HARRISON J, HOLDER Y, et al. Addressing the growing burden of trauma and injury in low- and middle-income countries. Am J Public Health. 2005;95(7):1089-1090.
[2] PEPPAS NA, HILT JZ, KHADEMHOSSEINI A, et al. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18(11):1345-1360.
[3] ANNAMALAI J, MURUGAN P, GANAPATHY D, et al. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications-A review. Chemosphere. 2022;298:134184.
[4] SUN W, ZHAO X, WEBB E, et al. Advances in metal–organic framework-based hydrogel materials: preparation, properties and applications. J Mater Chem A. 2023;11(5):2092-2127.
[5] YANG J, YANG YW. Metal-organic frameworks for biomedical applications. Small. 2020;16(10): e1906846.
[6] ZHANG YP, XU JX, ZHOU J, et al. Metal-organic framework-derived multifunctional photocatalysts. Chin J Catal. 2022;43(4):971-1000.
[7] HAN D, LI Y, LIU X, et al. Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. Chem Eng J. 2020. doi: 10.1016/j.cej.2020.125194.
[8] HOSEINPOUR V, SHARIATINIA Z. Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: a review. Tissue Cell. 2021;72:101588.
[9] VODYASHKIN AA, SERGORODCEVA AV, KEZIMANA P, et al. Metal-organic framework (MOF)—a universal material for biomedicine. Int J Mol Sci. 2023;24(9):7819.
[10] MOHARRAMNEJAD M, EHSANI A, SHAHI M, et al. MOF as nanoscale drug delivery devices: Synthesis and recent progress in biomedical applications. J Drug Delivery Sci Technol. 2023. doi: 10.1016/j.jddst.2023.104285.
[11] HOU YS, MA SH, HAO JL, et al. Construction and ion transport-related applications of the hydrogel-based membrane with 3D nanochannels. Polymers. 2022;14(19):4037.
[12] BAI L, TAO G, FENG MG, et al. Hydrogel drug delivery systems for bone regeneration. Pharmaceutics. 2023;15(5):1334.
[13] 杨航,熊玉竹,兰显玉,等.抗菌水凝胶在伤口敷料中的应用[J].化工新型材料,2022, 50(8):267-272.
[14] LEI LJ, BAI YJ, QIN XY, et al. Current understanding of hydrogel for drug release and tissue engineering. Gels. 2022;8(5):301.
[15] ZHANG X, WEI PY, YANG ZY, et al. Current progress and outlook of nano-based hydrogel dressings for wound healing. Pharmaceutics. 2023;15(1):68.
[16] CHENG H, SHI Z, YUE K, et al. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 2021; 124:219-232.
[17] ZONG Z, TIAN GH, WANG JL, et al. Recent advances in metal-organic-framework-based nanocarriers for controllable drug delivery and release. Pharmaceutics. 2022;14(12):2790.
[18] MOHARRAMNEJAD M, MALEKSHAH RE, EHSANI A, et al. A review of recent developments of metal-organic frameworks as combined biomedical platforms over the past decade. Adv Colloid Interface Sci. 2023;316:102908.
[19] WICHTERLE O, LÍM D. Hydrophilic gels for biological use. Nature. 1960;185(4706):117-118.
[20] TOMIC EA. Thermal stability of coordination polymers. J Appl Polym Sci. 1965;9(11):3745-3752.
[21] YAGHI OM, LI G, LI H. Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995;378(6558):703-706.
[22] CHUJO Y, SADA K, SAEGUSA T. Iron(II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel. Macromolecules. 1993;26(24):6315-6319.
[23] LIU Y, MA W, LIU W, et al. Silver(I)-glutathione biocoordination polymer hydrogel: effective antibacterial activity and improved cytocompatibility. J Mater Chem. 2011;21(48):19214-19218.
[24] MAURIN G, SERRE C, COOPER A, et al. The new age of MOFs and of their porous-related solids. Chem Soc Rev. 2017;46(11):3104-3107.
[25] HAMEDI H, MORADI S, HUDSON SM, et al. Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym. 2018;199:445-460.
[26] ZHANG Y, WU H, LI P, et al. Dual-light-triggered in situ structure and function regulation of injectable hydrogels for high-efficient anti-infective wound therapy. Adv Healthc Mater. 2022;11(1):e2101722.
[27] DE LIMA HHC, DA SILVA CTP, KUPFER VL, et al. Synthesis of resilient hybrid hydrogels using UiO-66 MOFs and alginate (hydroMOFs) and their effect on mechanical and matter transport properties. Carbohydr Polym. 2021;251:116977.
[28] SHAO G, WANG S, ZHAO H, et al. Tunable arrangement of hydrogel and cyclodextrin-based metal organic frameworks suitable for drug encapsulation and release. Carbohydr Polym. 2022;278:118915.
[29] CHAKRABORTY A, SUTAR P, YADAV P, et al. Charge-assisted self-assembly of ZIF-8 and laponite clay toward a functional hydrogel nanocomposite. Inorg Chem. 2018;57(23):14480-14483.
[30] CAO Z, WANG H, CHEN J, et al. Silk-based hydrogel incorporated with metal-organic framework nanozymes for enhanced osteochondral regeneration. Bioact Mater. 2023;20:221-242.
[31] WENG P, LIU K, YUAN M, et al. Development of a ZIF-91-porous-liquid-based composite hydrogel dressing system for diabetic wound healing. Small. 2023:e2301012.
[32] ZHU Z, LIU Y, CHEN J, et al. Structural-functional pluralistic modification of silk fibroin via mof bridging for advanced wound care. Adv Sci (Weinh). 2022;9(35):e2204553.
[33] 杨宇州, 李政, 黄艳凤,等. MOF基水凝胶材料的制备及其应用[J].化学进展,2021,33(5):726-739.
[34] WANG TL, ZHOU ZF, LIU JF, et al. Donut-like MOFs of copper/nicotinic acid and composite hydrogels with superior bioactivity for rh-bFGF delivering and skin wound healing. J Nanobiotechnol. 2021;19(1):275.
[35] NELE V, WOJCIECHOWSKI JP, ARMSTRONG JPK, et al. Tailoring gelation mechanisms for advanced hydrogel applications. Adv Funct Mater. 2020. doi: 10.1002/adfm.202002759.
[36] RAINA N, PAHWA R, BHATTACHARYA J, et al. Drug delivery strategies and biomedical significance of hydrogels: translational considerations. Pharmaceutics. 2022;14(3):574.
[37] 包佳伟,刘鉴峰,张嘉敏,等.金属-有机框架材料在细菌感染治疗中的研究进展[J].科学通报,2023,68(13):1677-1688.
[38] LI SR, CUI YT, LIU H, et al. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B. 2022;10(45):9369-9388.
[39] SUN Y, LIU X, ZHU Y, et al. Tunable and controlled release of cobalt ions from metal-organic framework hydrogel nanocomposites enhances bone regeneration. ACS Appl Mater Interfaces. 2021;13(49):59051-59066.
[40] CHEN ZT, YUEN J, CRAWFORD R, et al. The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated beta-tricalcium phosphate. Biomaterials. 2015;61:126-138.
[41] SUN ZY, LI TY, MEI TX, et al. Nanoscale MOFs in nanomedicine applications: from drug delivery to therapeutic agents. J Mater Chem B. 2023;11(15):3273-3294.
[42] LU S, REN X, GUO T, et al. Controlled release of iodine from cross-linked cyclodextrin metal-organic frameworks for prolonged periodontal pocket therapy. Carbohydr Polym. 2021;267:118187.
[43] LIU Y, ZHU Z, PEI X, et al. ZIF-8-Modified Multifunctional bone-adhesive hydrogels promoting angiogenesis and osteogenesis for bone regeneration. ACS Appl Mater Interfaces. 2020; 12(33):36978-36995.
[44] ZHANG M, WANG G, WANG D, et al. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications. Int J Biol Macromol. 2021;175:481-494.
[45] TIAN M, ZHOU L, FAN C, et al. Bimetal-organic framework/GOx-based hydrogel dressings with antibacterial and inflammatory modulation for wound healing. Acta Biomater. 2023;158:252-265.
[46] DU T, XIAO Z, ZHANG G, et al. An injectable multifunctional hydrogel for eradication of bacterial biofilms and wound healing. Acta Biomater. 2023;161:112-133.
[47] QIAO M, XU Z, PEI X, et al. Nano SIM@ZIF-8 modified injectable High-intensity biohydrogel with bidirectional regulation of osteogenesis and Anti-adipogenesis for bone repair. Chem Eng J. 2022;434.
[48] YANG H, HU Y, KANG M, et al. Gelatin-glucosamine hydrochloride/crosslinked-cyclodextrin metal-organic frameworks@IBU composite hydrogel long-term sustained drug delivery system for osteoarthritis treatment. Biomed Mater. 2022. doi: 10.1088/1748-605X/ac61fa.
[49] LEE SJ, TELFER SG. Multicomponent metal-organic frameworks. Angew Chem Int Ed Engl. 2023; 62(44):e202306341.
[50] SALEEM G, CHEN X, GU RX, et al. Nanozymes - A route to overcome microbial resistance: a viewpoint. Nanotechnol Rev. 2022;11(1):2575-2583.
[51] CHANDIO I, AI YJ, WU L, et al. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 2023. doi: 10.1007/s12274-023-5770-3.
[52] MATLOU GG, ABRAHAMSE H. Nanoscale metal-organic frameworks as photosensitizers and nanocarriers in photodynamic therapy. Front Chem. 2022;10:971747.
[53] XU DX, DUAN Q, YU H, et al. Photodynamic therapy based on porphyrin-based metal-organic frameworks. J Mater Chem B. 2023;11(26):5976-5989.
[54] CHEN Y, LI D, ZHONG Y, et al. NIR regulated upconversion nanoparticles@metal-organic framework composite hydrogel dressing with catalase-like performance and enhanced antibacterial efficacy for accelerating wound healing. Int J Biol Macromol. 2023;235:123683.
[55] ASHRAF G, AHMAD T, AHMED MZ, et al. Advances in metal-organic frameworks (MOFs) based Biosensors for diagnosis: an update. Curr Top Med Chem. 2022;22(27):2222-2240.
[56] NISHAT ZS, HOSSAIN T, ISLAM MN, et al. Hydrogel nanoarchitectonics: an evolving paradigm for ultrasensitive biosensing. Small. 2022;18(26):e2107571..
[57] XUE NN, DING XF, HUANG RZ, et al. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals. 2022;15(7):879.
[58] SHYNGYS M, REN J, LIANG XQ, et al. Metal-organic framework (MOF)-based biomaterials for tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2021;9:603608.
[59] WANG SY, LI R, XIA DD, et al. The impact of Zn-doped synthetic polymer materials on bone regeneration: a systematic review. Stem Cell Res Ther. 2021;12(1):123.
[60] ZHENG J, BRION MJ, KEMP JP, et al. The effect of plasma lipids and lipid-lowering interventions on bone mineral density: a mendelian randomization study. J Bone Miner Res. 2020;35(7):1224-1235.
[61] LAO A, WU J, LI D, et al. Functionalized metal-organic framework-modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects. Small. 2023;19(36):e2206919.
[62] CHEN RY, PYE JS, LI JR, et al. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater. 2023;27:505-545.
[63] WONG HL, TSANG CY, BEYER S. Metal-organic frameworks (MOFs) and their composites as emerging biomaterials for osteoarthritis treatment. Biomimetics (Basel). 2023;8(1):97.
[64] LI Y, FU R, DUAN Z, et al. Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing. Bioact Mater. 2022;9:461-474.
[65] XU Z, HAN S, GU Z, et al. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv Healthcare Mater. 2020;9(5):e1901502.
[66] YAO X, ZHU G, ZHU P, et al. Omniphobic ZIF-8@hydrogel membrane by microfluidic-emulsion-templating method for wound healing. Adv Funct Mater. 2020. doi: 10.1002/adfm.201909389.
[67] ZHOU Q, DONG X, ZHANG B, et al. Naked-eye sensing and target-guiding treatment of bacterial infection using pH-tunable multicolor luminescent lanthanide-based hydrogel. J Colloid Interface Sci. 2022;610:731-740.
[68] AHMAD N. In vitro and in vivo characterization methods for evaluation of modern wound dressings. Pharmaceutics. 2023;15(1):42.
[69] LI N, XIE L, WU Y, et al. Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment. Mater Today Bio. 2022;16:100360.
[70] WORSLEY AL, LUI DH, NTOW-BOAHENE W, et al. The importance of inflammation control for the treatment of chronic diabetic wounds. Int Wound J. 2023;20(6):2346-2359.
[71] CHAO D, DONG Q, YU Z, et al. Specific nanodrug for diabetic chronic wounds based on antioxidase-mimicking MOF-818 nanozymes. J Am Chem Soc. 2022;144(51):23438-23447.
[72] HAN C, BARAKAT M, DIPIETRO LA. Angiogenesis in wound repair: too much of a good thing? Cold Spring Harbor Perspect Biol. 2022;14(10):a041225.
[73] ZHANG X, WANG Z, JIANG H, et al. Self-powered enzyme-linked microneedle patch for scar-prevention healing of diabetic wounds. Sci Adv. 2023;9(28):eadh1415.
|