中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (34): 5064-5069.doi: 10.3969/j.issn.2095-4344.2016.34.008

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

制备生物可降解网状人工胸壁:性能及在胸壁缺损中的应用

王 新1,佟箫兵2,刘常明3   

  1. 1南阳市中心医院,河南省南阳市  4730002克拉玛依市中心医院,新疆维吾尔自治区克拉玛依市 834099;3新疆医科大学第一附属医院,新疆维吾尔自治区乌鲁木齐市 830054
  • 收稿日期:2016-06-02 出版日期:2016-08-19 发布日期:2016-08-19
  • 作者简介:王新,男,1976年生,河南省内乡县人,汉族,硕士,主治医师,主要从事胸外科基础与临床研究。

An artificial reticular chest wall made of biodegradable materials: properties and application in chest wall reconstruction

Wang Xin1, Tong Xiao-bing2, Liu Chang-ming3   

  1. 1Central Hospital of Nanyang, Nanyang 473000, Henan Province, China; 2Central Hospital of Karamay, Karamay 834099, Xinjiang Uygur Autonomous Region, China; 3First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
  • Received:2016-06-02 Online:2016-08-19 Published:2016-08-19
  • About author:Wang Xin, Master, Attending physician, Central Hospital of Nanyang, Nanyang 473000, Henan Province, China

摘要:

文章快速阅读:

 

文题释义:
人工合成可降解高分子材料
:主要包括聚乳酸、聚羟基乙酸、聚己内酯材料等,这些材料的组成成分及降解产物均为生物体内本身存在的一些小分子产物,具有天然的生物相容性和安全性。近年来,随着医疗技术的飞速发展,生物可降解材料在胸壁缺损中得到应用,该材料主要是由聚羟基乙酸及乳酸聚合而来,在临床上得到应用,如手术缝合线、骨科固定、组织材料修复等。聚乙丙交酯分解时其产物经过肾脏等能排出体外,代谢产物无毒,具有良好的生物相容性。
人工胸壁修复材料:具备良好的生物相容性,修复过程中更加有利于细胞的贴附、增殖,并且材料必须对机体不会产生毒害作用;材料必须具备良好的生物降解性,置入机体后应该能与细胞的生长速率相适应,更加符合组织的生长规律;修复材料必须具备一定的机械强度,能够为缺损部位组织提供足够的支撑,保证新生组织的生长;材料具备良好的细胞界面,更加利于细胞的聚合。


背景:传统修复胸壁缺损的材料由于无法降解,需要长期留在体内且组织反应较大,并发症发生率较高,难以满足修复的需要。
目的:制备生物可降解网状人工胸壁,分析其性能及在胸壁缺损中的应用效果。
方法:将蚕丝纤维来源与聚己内酯熔融共混,制备生物可降解网状人工胸壁材料,检测其孔隙率与弹性模量。取22只家兔,建立胸壁缺损模型,随机分2组,实验组置入生物可降解网状人工胸壁材料,对照组置入聚己内酯材料,置入后4周,苏木精-伊红染色观察缺损部位;置入后2个月,CT检查骨缺损部位。
结果与结论:①生物可降解网状人工胸壁材料孔洞分布较均匀,孔隙率为54.4%,直径200-300 µm,材料中纤维分布相对稳定,弹性模量高于聚己内酯(P < 0.05);②CT显示,实验组材料与肋骨断端紧密接触,胸壁板与脏层胸膜之间出现新生组织;对照组材料与断端处接触,边界不清,存在高密度影;③苏木精-伊红染色显示,实验组有大量纤维细胞,胶原纤维较疏松,炎细胞数少;对照组纤维肌膜与肌肉边界不清,存在水肿,有较多炎细胞浸润;④结果表明:生物可降解网状人工胸壁可促进缺损胸壁的修复。

ORCID: 0000-0002-9960-6920(王新)

关键词: 生物材料, 材料相容性, 生物可降解网状人工胸壁, 制备方法, 性能, 胸壁缺损, 动物模型, 聚已内酯, 多孔复合材料, 力学性能, 修复效果

Abstract:

BACKGROUND: Due to their inability to be degraded, the traditional repair materials for chest wall defects require a long-term stay in the body. Therefore, severe tissue reaction and the high incidence of complications make the traditional materials unable to meet the requirements of restoration.
OBJECTIVE: To prepare an artificial reticular chest wall using biodegradable materials, and to analyze its performance and application in the repair of chest wall defect.
METHODS: Mixture of silk fiber and polycaprolactone was used to prepare the biodegradable chest wall, and its porosity and modulus of elasticity were measured. Twenty-two rabbits were selected to build chest wall defect models, which were randomized into two groups. The artificial reticular chest wall was implanted into experimental group, and polycaprolactone implanted into control group. At 4 weeks after implantation, the chest defect was observed by hematoxylin-eosin staining; at 2 months, the chest defect region was observed by CT examination.
RESULTS AND CONCLUSION: The holes were uniformly distributed in the artificial chest wall, with the porosity of 54.4% and the diameter of 200-300 μm, fiber distribution in the material was relatively stable, and the modulus of elasticity was significantly higher than that of the polycaprolactone (P < 0.05). CT showed that in the experimental group, the implant material was in close contact with the rib ends, and new tissues appeared between the chest wall plate and visceral pleura; in the control group, the material contacted the broken ends with unclear border, and a visible high density. Hematoxylin-eosin staining showed that in the experimental group there were numerous fibroblasts and a small amount of inflammatory cells, and collagen fibers were loose; in the control group, the boundary between the muscle fiber membrane and the muscle became obscure, accompanied by appearance of edema and more inflammatory cells. These results show that the artificial reticular chest wall made of biodegradable materials can promote the chest wall repair.

Key words: Thoracic Wall, Elastic Modulus, Tissue Engineering

中图分类号: