中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (29): 4703-4709.doi: 10.12307/2024.535

• 生物材料综述 biomaterial review • 上一篇    下一篇

3D打印水凝胶仿生结构修复运动系统的组织损伤

吴吉岑元,朱  舟,裴锡波   

  1. 四川大学华西口腔医院修复科,口腔疾病研究国家重点实验室,国家口腔疾病临床医学研究中心,四川省成都市  610041
  • 收稿日期:2023-10-07 接受日期:2023-11-14 出版日期:2024-10-18 发布日期:2024-03-23
  • 通讯作者: 裴锡波,博士,副教授,硕士生导师,四川大学华西口腔医院修复科,口腔疾病研究国家重点实验室,国家口腔疾病临床医学研究中心,四川省成都市 610041
  • 作者简介:吴吉岑元,女,1999年生,云南省昆明市人,汉族,四川大学在读硕士,主要从事水凝胶材料在骨修复中的应用研究。
  • 基金资助:
    国家自然科学基金-面上项目(82271016),项目负责人:裴锡波;四川大学华西口腔交叉学科创新项目(RD-03-202310),项目负责人:裴锡波

3D-printed biomimetic hydrogel for repairing tissue damage in motor systems

Wu Jicenyuan, Zhu Zhou, Pei Xibo   

  1. National Clinical Medical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2023-10-07 Accepted:2023-11-14 Online:2024-10-18 Published:2024-03-23
  • Contact: Pei Xibo, PhD, Associate professor, Master’s supervisor, National Clinical Medical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
  • About author:Wu Jicenyuan, Master candidate, National Clinical Medical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 82271016 (to PXB); Cross-Disciplinary Innovation Project of Sichuan University West China School of Stomatology, No. RD-03-202310 (to PXB)

摘要:


文题释义:

仿生结构:受自然界生物的特殊结构启发,利用生物材料模仿设计出的相似结构,以发挥理想的功能。
运动系统:包括骨、骨连结和骨骼肌3部分,骨借助骨连结形成骨骼,骨骼肌附着于骨,跨过关节,牵拉骨产生运动。


背景:创伤、炎症和肿瘤等因素常会造成运动系统各组织缺损,损伤包括骨、关节、骨骼肌以及伴行血管及神经,而临床上通常难以对涉及的所有组织功能损伤实现系统地修复,这为临床治疗带来了极大的挑战。

目的:阐述3D打印的水凝胶仿生结构在运动系统组织损伤中的应用。
方法:运用计算机检索中国知网、万方和PubMed数据库中2003-2023年发表的相关文献,以“3D printing,Hydrogel,Bone,Cartilage,Muscle,Nerve,Vasculature,Tissue engineering,Biomimetics”为英文检索词,以“3D打印,水凝胶,骨,软骨,肌,神经,脉管系统,组织工程,仿生结构”为中文检索词检索,并进行筛选、归纳与总结,最终纳入63篇相关文献进行综述。

结果与结论:①3D打印水凝胶可以通过几种不同的方式实现,如直接3D打印、混合模式3D打印,或是通过打印中间模具来制造具有3D仿生结构的水凝胶,在目前的研究中,3D打印水凝胶仿生结构的制造工艺里应用最广泛的还是挤出式打印。②通过生物打印水凝胶可制造具有复杂灌注结构的仿生血管并可诱导形成生物相关、高度组织化及完整的血管。③可以利用生物打印技术,模仿天然骨的分级结构和功能,将水凝胶与不同类型的细胞和生长因子结合,制造出更接近天然骨组成与结构的组织工程支架,以更好地实现骨再生。④可通过在3D打印的水凝胶导管结构内加入不同纤维材料实现神经纤维结构仿生。⑤利用特定水凝胶模拟肌束结构或者制造整合了血管/神经的工程化肌组织仿生结构可在体内增强体积性肌肉损害模型修复。⑥综合目前的相关研究,接近细胞外基质特性的甲基丙烯酰化明胶常被考虑为3D打印各种组织仿生结构的水凝胶原材料,研究者们还会在其中加入不同的生长因子或者细胞进行生物打印来实现目标组织的修复。⑦3D打印水凝胶仿生结构的临床试验报道尚欠缺,说明此类材料的临床转化还需要经历一个长期过程,临床应用方面仍需完善,还需要更加全面的体内安全性评估。

https://orcid.org/0009-0008-1925-4584(吴吉岑元);https://orcid.org/0000-0003-0386-8262(裴锡波)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 3D打印, 水凝胶, 组织损伤, 组织工程, 仿生结构, 脉管系统, 骨组织工程, 骨关节结构, 神经结构, 体积性肌肉损伤

Abstract: BACKGROUND: Trauma, inflammation, tumors, and other factors commonly result in tissue defects, including damage to bones, joints, skeletal muscles, and associated blood vessels and nerves. Clinically, it is often challenging to repair all the functional injuries involving these tissues, posing great challenges for clinical treatment.
OBJECTIVE: To elucidate the application of 3D-printed hydrogel biomimetic structures in motor system tissue injuries.
METHODS: Relevant literature published from 2003 to 2023 was retrieved from the CNKI, Wanfang Data, and PubMed databases. The Chinese and English search terms were “3D printing, hydrogel, bone, cartilage, muscle, nerve, vasculature, tissue engineering, biomimetics”. After screening, induction and summary, 63 relevant articles were finally included for review.
RESULTS AND CONCLUSION: (1) 3D-printed hydrogels can be achieved in several different ways, such as direct 3D printing, hybrid mode 3D printing, or manufacturing 3D bio-inspired structures in hydrogels by printing intermediate molds. Among these manufacturing processes, extrusion-based printing is currently the most widely used for 3D printing hydrogels with bio-inspired structures. (2) Bioprinting hydrogels enables the production of biovascular structures with complex perfusion patterns, and it can induce the formation of biologically relevant, highly organized, and intact blood vessels. (3) By utilizing bioprinting technology, it is possible to mimic the hierarchical structure and function of natural bone, combining hydrogels with different types of cells and growth factors to create tissue engineering scaffolds that closely resemble the composition and structure of natural bone, thereby facilitating better bone regeneration. (4) Neural fiber structure can be bio-inspired by incorporating different fiber materials into the 3D-printed hydrogel conduit structure. (5) Utilizing specific hydrogel formulations, it is possible to simulate muscle bundle structures or engineer muscle tissues integrating blood vessels and nerves, which can enhance the repair of volumetric muscle injuries in vivo. (6) Based on current related research, methacrylated gelatin, which closely resembles the characteristics of the extracellular matrix, is often considered as a raw material for 3D printing various tissue bio-inspired structures. Researchers also incorporate different growth factors or cells into the hydrogels for bioprinting to achieve the desired tissue repair outcomes. (7) Although there is a lack of clinical trial reports on 3D-printed hydrogel bio-inspired structures, this indicates that the clinical translation of such materials still requires a long-term process. Further improvements are needed in terms of clinical applications, as well as comprehensive in vivo safety assessments.

Key words: 3D printing, hydrogel, tissue damage, tissue engineering, biomimetic structure, vascular system, bone tissue engineering, osteoarticular structure, neural structure, volumetric muscle injury

中图分类号: