中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (25): 4079-4086.doi: 10.12307/2024.193
• 干细胞综述 stem cell review • 上一篇 下一篇
王艳阳1,2,刘 婵1,2,余丽梅1,2,何志旭1,2,3
收稿日期:
2023-07-08
接受日期:
2023-08-24
出版日期:
2024-09-08
发布日期:
2023-11-24
通讯作者:
何志旭,主任医师,教授,博士生导师,遵义医科大学附属医院贵州省细胞工程重点实验室,贵州省遵义市 563000;遵义医科大学组织损伤修复与再生医学省部共建协同创新中心,贵州省遵义市 563000;贵州省儿童医院遵义医科大学附属医院小儿内科,贵州省遵义市 563000
作者简介:
王艳阳,女,1999年生,河南省焦作市人,汉族,遵义医科大学在读硕士,主要从事干细胞治疗学研究。
基金资助:
Wang Yanyang1, 2, Liu Chan1, 2, Yu Limei1, 2, He Zhixu1, 2, 3
Received:
2023-07-08
Accepted:
2023-08-24
Online:
2024-09-08
Published:
2023-11-24
Contact:
He Zhixu, Chief physician, Professor, Doctoral supervisor, Key Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China; Ministry of Tissue Damage Repair and Regenerative Medicine Jointly Established a Collaborative Innovation Center, Zunyi Medical University, Zunyi 563000, Guizhou Province, China; Guizhou Children’s Hospital; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
About author:
Wang Yanyang, Master candidate, Key Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China; Ministry of Tissue Damage Repair and Regenerative Medicine Jointly Established a Collaborative Innovation Center, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
Supported by:
摘要:
文题释义:
间充质干细胞:是一类多能性的成体干细胞,起源于间充质组织,主要存在于骨髓、脂肪组织、脐带以及其他组织中。这些干细胞具有自我更新和多向分化能力,可以分化为多种细胞类型,包括成骨细胞、软骨细胞、脂肪细胞和肌肉细胞等,已广泛应用于组织工程、再生医学和疾病治疗等领域。细胞外囊泡:是一类由细胞释放到细胞外的小型膜包裹的囊泡,其直径通常在30-1 000 nm之间。细胞外囊泡包含了细胞内部的生物活性分子,如蛋白质、核酸(RNA和DNA)、脂质等。这些囊泡可以通过与周围细胞进行物质交换,传递包含的生物信息,从而调节目标细胞的生物学功能和信号传导。细胞外囊泡在细胞间的通讯和信息传递中起着重要的作用,被认为是一种重要的细胞间通讯介质,对于维持组织稳态和参与疾病发生发展具有重要意义。
结果与结论:①间充质干细胞及其细胞外囊泡可以通过多种机制抑制纤维化过程,如调节炎症反应、抑制成纤维细胞增殖和促进受损组织修复,临床试验的初步结果也显示出一定的治疗效果,包括改善患者的肺功能和生活质量。②然而,间充质干细胞及其细胞外囊泡治疗肺纤维化仍面临一些挑战。在治疗过程中需要解决细胞迁移和组织内定位等问题,以其能够准确到达受损肺组织。另外,长期安全性问题也有待进一步研究改进。对于其转化医学发展,细胞采集、细胞分离、细胞培养、细胞收获和细胞鉴定等标准化程序还需要被细化。③尽管面临这些挑战,但通过科研工作者和医务人员的共同努力,这些问题有望得到逐步解决。未来,可以通过优化治疗方案和探索个体化治疗进一步提高治疗效果。同时,深入研究间充质干细胞及其细胞外囊泡的治疗机制,有望开发出更为高效和安全的治疗策略。
https://orcid.org/0009-0002-3682-3618 (王艳阳);https://orcid.org/0000-0002-8263-129X (何志旭)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
王艳阳, 刘 婵, 余丽梅, 何志旭. 间充质干细胞及细胞外囊泡治疗肺纤维化的现状与未来[J]. 中国组织工程研究, 2024, 28(25): 4079-4086.
Wang Yanyang, Liu Chan, Yu Limei, He Zhixu. Current status and future of treatment of pulmonary fibrosis by mesenchymal stem cells and extracellular vesicles[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(25): 4079-4086.
[1] NALYSNYK L, CID-RUZAFA J, ROTELLA P, et al. Incidence and prevalence of idiopathic pulmonary fibrosis: review of the literature. Eur Respir Rev. 2012; 21(126):355-361. [2] KING TE JR, PARDO A, SELMAN M. Idiopathic pulmonary fibrosis. Lancet. 2011; 378(9807):1949-1961. [3] WAKWAYA Y, BROWN KK. Idiopathic Pulmonary Fibrosis: Epidemiology, Diagnosis and Outcomes. Am J Med Sci. 2019;357(5):359-369. [4] MOSS BJ, RYTER SW, ROSAS IO. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. Annu Rev Pathol. 2022;17:515-546. [5] CHIOMA OS, DRAKE WP. Role of Microbial Agents in Pulmonary Fibrosis. Yale J Biol Med. 2017;90(2):219-227. [6] GENTILE F, AIMO A, FORFORI F, et al. COVID-19 and risk of pulmonary fibrosis: the importance of planning ahead. Eur J Prev Cardiol. 2020;27(13):1442-1446. [7] CAPLAN AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641-650. [8] ANDRZEJEWSKA A, LUKOMSKA B, JANOWSKI M. Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells. 2019;37(7):855-864. [9] VASANTHAN J, GURUSAMY N, RAJASINGH S, et al. Role of Human Mesenchymal Stem Cells in Regenerative Therapy. Cells. 2020;10(1):54. [10] MISHRA VK, SHIH HH, PARVEEN F, et al. Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells. 2020;9(5):1145. [11] SAMSONRAJ RM, RAGHUNATH M, NURCOMBE V, et al. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med. 2017;6(12):2173-2185. [12] LI DY, LI RF, SUN DX, et al. Mesenchymal stem cell therapy in pulmonary fibrosis: a meta-analysis of preclinical studies. Stem Cell Res Ther. 2021;12(1):461. [13] LAI P, WENG J, GUO L, et al. Novel insights into MSC-EVs therapy for immune diseases. Biomark Res. 2019;7:6. [14] HARRELL CR, JOVICIC N, DJONOV V, et al. Mesenchymal Stem Cell-Derived Exosomes and Other Extracellular Vesicles as New Remedies in the Therapy of Inflammatory Diseases. Cells. 2019;8(12):1605. [15] RANI S, RYAN AE, GRIFFIN MD, et al. Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Mol Ther. 2015;23(5):812-823. [16] FERNÁNDEZ-FRANCOS S, EIRO N, COSTA LA, et al. Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. Int J Mol Sci. 2021;22(7):3576. [17] MEYER KC. Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis. Expert Rev Respir Med. 2017;11(5):343-359. [18] WANG YY, ZHANG CY, MA YQ, et al. Therapeutic effects of C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me; bardoxolone methyl) on radiation-induced lung inflammation and fibrosis in mice. Drug Des Devel Ther. 2015;9:3163-3178. [19] AMERICAN THORACIC SOCIETY. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med. 2000; 161(2 Pt 1):646-664. [20] WICK G, GRUNDTMAN C, MAYERL C, et al. The immunology of fibrosis. Annu Rev Immunol. 2013;31:107-135. [21] ADAMS TS, SCHUPP JC, POLI S, et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1983. [22] LOCATI M, MANTOVANI A, SICA A. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol. 2013;120:163-184. [23] ZHANG L, WANG Y, WU G, et al. Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res. 2018;19(1):170. [24] HEUKELS P, MOOR CC, VON DER THÜSEN JH, et al. Inflammation and immunity in IPF pathogenesis and treatment. Respir Med. 2019;147:79-91. [25] WICK G, BACKOVIC A, RABENSTEINER E, et al. The immunology of fibrosis: innate and adaptive responses. Trends Immunol. 2010;31(3):110-119. [26] PARK SJ, HAHN HJ, OH SR, et al. Theophylline Attenuates BLM-Induced Pulmonary Fibrosis by Inhibiting Th17 Differentiation. Int J Mol Sci. 2023;24(2):1019. [27] LIANG J, ZHANG Y, XIE T, et al. Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nat Med. 2016;22(11):1285-1293. [28] MILLIEN VO, LU W, SHAW J, et al. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science. 2013;341(6147):792-796. [29] O’DWYER DN, ARMSTRONG ME, TRUJILLO G, et al. The Toll-like receptor 3 L412F polymorphism and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2013;188(12):1442-1450. [30] MCELROY AN, INVERNIZZI R, LASKOWSKA JW, et al. Candidate Role for Toll-like Receptor 3 L412F Polymorphism and Infection in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2022;205(5):550-562. [31] TIAN R, ZHU Y, YAO J, et al. NLRP3 participates in the regulation of EMT in bleomycin-induced pulmonary fibrosis. Exp Cell Res. 2017;357(2):328-334. [32] JÄGER B, SEELIGER B, TERWOLBECK O, et al. The NLRP3-Inflammasome-Caspase-1 Pathway Is Upregulated in Idiopathic Pulmonary Fibrosis and Acute Exacerbations and Is Inducible by Apoptotic A549 Cells. Front Immunol. 2021; 12:642855. [33] CHO SJ, MOON JS, NIKAHIRA K, et al. GLUT1-dependent glycolysis regulates exacerbation of fibrosis via AIM2 inflammasome activation. Thorax. 2020;75(3): 227-236. [34] TOMASEK JJ, GABBIANI G, HINZ B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349-363. [35] TSUKUI T, SUN KH, WETTER JB, et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun. 2020;11(1):1920. [36] CHILOSI M, CALIÒ A, ROSSI A, et al. Epithelial to mesenchymal transition-related proteins ZEB1, β-catenin, and β-tubulin-III in idiopathic pulmonary fibrosis. Mod Pathol. 2017;30(1):26-38. [37] WILLIS BC, LIEBLER JM, LUBY-PHELPS K,et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005;166(5):1321-1332. [38] MARMAI C, SUTHERLAND RE, KIM KK, et al. Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2011;301(1):L71-L78. [39] MAHER TM, OBALLA E, SIMPSON JK, et al. An epithelial biomarker signature for idiopathic pulmonary fibrosis: an analysis from the multicentre PROFILE cohort study. Lancet Respir Med. 2017;5(12):946-955. [40] BARRATT S, MILLAR A. Vascular remodelling in the pathogenesis of idiopathic pulmonary fibrosis. QJM. 2014;107(7):515-519. [41] KEANE MP, ARENBERG DA, LYNCH JP 3RD, et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J Immunol. 1997;159(3):1437-1443. [42] RUSSO RC, GUABIRABA R, GARCIA CC, et al. Role of the chemokine receptor CXCR2 in bleomycin-induced pulmonary inflammation and fibrosis. Am J Respir Cell Mol Biol. 2009;40(4):410-421. [43] MARGARITOPOULOS GA, ANTONIOU KM, KARAGIANNIS K, et al. Investigation of angiogenetic axis Angiopoietin-1 and -2/Tie-2 in fibrotic lung diseases: a bronchoalveolar lavage study. Int J Mol Med. 2010;26(6):919-923. [44] AMANO H, MATSUI Y, HATANAKA K, et al. VEGFR1-tyrosine kinase signaling in pulmonary fibrosis. Inflamm Regen. 2021;41(1):16. [45] ANDO M, MIYAZAKI E, ITO T, et al. Significance of serum vascular endothelial growth factor level in patients with idiopathic pulmonary fibrosis. Lung. 2010; 188(3):247-252. [46] MURRAY LA, HABIEL DM, HOHMANN M, et al. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight. 2017;2(16):e92192. [47] TAKAO S, NAKASHIMA T, MASUDA T, et al. Human bone marrow-derived mesenchymal stromal cells cultured in serum-free media demonstrate enhanced antifibrotic abilities via prolonged survival and robust regulatory T cell induction in murine bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther. 2021;12(1):506. [48] HUANG J, HUANG J, NING X,et al. CT/NIRF dual-modal imaging tracking and therapeutic efficacy of transplanted mesenchymal stem cells labeled with Au nanoparticles in silica-induced pulmonary fibrosis. J Mater Chem B. 2020;8(8): 1713-1727. [49] FELIX RG, BOVOLATO ALC, COTRIM OS, et al. Adipose-derived stem cells and adipose-derived stem cell-conditioned medium modulate in situ imbalance between collagen I- and collagen V-mediated IL-17 immune response recovering bleomycin pulmonary fibrosis. Histol Histopathol. 2020;35(3):289-301. [50] DA SILVA KN, PINHEIRO PCG, GOBATTO ALN, et al. Immunomodulatory and Anti-fibrotic Effects Following the Infusion of Umbilical Cord Mesenchymal Stromal Cells in a Critically Ill Patient With COVID-19 Presenting Lung Fibrosis: A Case Report. Front Med (Lausanne). 2021;8:767291. [51] GAD ES, SALAMA AAA, EL-SHAFIE MF, et al. The Anti-fibrotic and Anti-inflammatory Potential of Bone Marrow-Derived Mesenchymal Stem Cells and Nintedanib in Bleomycin-Induced Lung Fibrosis in Rats. Inflammation. 2020; 43(1):123-134. [52] NI K, LIU M, ZHENG J, et al. PD-1/PD-L1 Pathway Mediates the Alleviation of Pulmonary Fibrosis by Human Mesenchymal Stem Cells in Humanized Mice. Am J Respir Cell Mol Biol. 2018;58(6):684-695. [53] RUBIO GA, ELLIOT SJ, WIKRAMANAYAKE TC, et al. Mesenchymal stromal cells prevent bleomycin-induced lung and skin fibrosis in aged mice and restore wound healing. J Cell Physiol. 2018;233(8):5503-5512. [54] MORONCINI G, PAOLINI C, ORLANDO F, et al. Mesenchymal stromal cells from human umbilical cord prevent the development of lung fibrosis in immunocompetent mice. PLoS One. 2018;13(6):e0196048. [55] XIAO K, LIU C, WANG H, et al. Umbilical cord mesenchymal stem cells overexpressing CXCR7 facilitate treatment of ARDS-associated pulmonary fibrosis via inhibition of Notch/Jag1 mediated by the Wnt/β-catenin pathway. Biomed Pharmacother. 2023;165:115124. [56] CHEN X, WU Y, WANG Y, et al. Human menstrual blood-derived stem cells mitigate bleomycin-induced pulmonary fibrosis through anti-apoptosis and anti-inflammatory effects. Stem Cell Res Ther. 2020;11(1):477. [57] ABDEL HALIM AS, AHMED HH, AGLAN HA, et al. Role of bone marrow-derived mesenchymal stem cells in alleviating pulmonary epithelium damage and extracellular matrix remodeling in a rat model of lung fibrosis induced by amiodarone. Biotech Histochem. 2021;96(6):418-430. [58] CHEN S, CUI G, PENG C, et al. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats. Stem Cell Res Ther. 2018;9(1):110. [59] LIU J, PENG D, YOU J, et al. Type 2 Alveolar Epithelial Cells Differentiated from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Mouse Pulmonary Fibrosis Through β-Catenin-Regulated Cell Apoptosis. Stem Cells Dev. 2021; 30(13):660-670. [60] YANG X, SUN W, JING X, et al. Endoplasmic reticulum stress modulates the fate of lung resident mesenchymal stem cell to myofibroblast via C/EBP homologous protein during pulmonary fibrosis. Stem Cell Res Ther. 2022;13(1):279. [61] XIAO K, HE W, GUAN W, et al. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis. 2020;11(10):863. [62] ZHANG E, YANG Y, CHEN S, et al. Bone marrow mesenchymal stromal cells attenuate silica-induced pulmonary fibrosis potentially by attenuating Wnt/β-catenin signaling in rats. Stem Cell Res Ther. 2018;9(1):311. [63] SHAO L, ZHANG Y, SHI W, et al. Mesenchymal stromal cells can repair radiation-induced pulmonary fibrosis via a DKK-1-mediated Wnt/β-catenin pathway. Cell Tissue Res. 2021;384(1):87-97. [64] LEE EJ, CÁRDENES N, ÁLVAREZ D, et al. Mesenchymal stem cells reduce ER stress via PERK-Nrf2 pathway in an aged mouse model. Respirology. 2020;25(4):417-426. [65] KHAJVAND-ABEDINI M, BAHMANI M, ZIAMAJIDI N, et al. The Restoring Effect of Human Umbilical Cord-Derived Mesenchymal Cell-Conditioned Medium (hMSC-CM) against Carbon Tetrachloride-Induced Pulmonary Fibrosis in Male Wistar Rats. Int J Inflam. 2022;2022:7179766. [66] 黄坤,周勇,刘美芳,等. 甘草酸二铵联合骨髓间充质干细胞治疗大鼠肺纤维化急性加重的实验研究[J].中国呼吸与危重监护杂志,2020,19(1):64-69. [67] WANG X, ZHAO S, LAI J, et al. Anti-Inflammatory, Antioxidant, and Antifibrotic Effects of Gingival-Derived MSCs on Bleomycin-Induced Pulmonary Fibrosis in Mice. Int J Mol Sci. 2021;23(1):99. [68] NASSAR SZ, ABDELMONSIF DA, ALI RG, et al. Sodium hydrosulfide and bone marrow derived mesenchymal stem cells combined therapy for bleomycin induced pulmonary fibrosis in rats: Implication of micro RNA-21 and Lnc GAS5. Life Sci. 2022;309:120988. [69] LI X, LI C, TANG Y, et al. NMDA receptor activation inhibits the antifibrotic effect of BM-MSCs on bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2018;315(3):L404-L421. [70] CÁRDENES N, ÁLVAREZ D, SELLARÉS J, et al. Senescence of bone marrow-derived mesenchymal stem cells from patients with idiopathic pulmonary fibrosis. Stem Cell Res Ther. 2018;9(1):257. [71] CAMPO A, GONZÁLEZ-RUIZ JM, ANDREU E, et al. Endobronchial autologous bone marrow-mesenchymal stromal cells in idiopathic pulmonary fibrosis: a phase I trial. ERJ Open Res. 2021;7(2):00773-2020. [72] AVERYANOV A, KOROLEVA I, KONOPLYANNIKOV M, et al. First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline. Stem Cells Transl Med. 2020;9(1):6-16. [73] HE F, WANG Y, LI Y, et al. Human amniotic mesenchymal stem cells alleviate paraquat-induced pulmonary fibrosis in rats by inhibiting the inflammatory response. Life Sci. 2020;243:117290. [74] GONG L, WANG X, XU S, et al. Human Amnion-Derived MSCs Alleviate Acute Lung Injury and Hinder Pulmonary Fibrosis Caused by Paraquat in Rats. Oxid Med Cell Longev. 2022;2022:3932070. [75] FIKRY H, SALEH LA, GAWAD SA. Therapeutic effect of adipose-derived mesenchymal stem cells (AD-MSCs) compared to pirfenidone on corticosteroid resistance in a mouse model of acute exacerbation of idiopathic pulmonary fibrosis. Histol Histopathol. 2022;37(11):1065-1083. [76] Shi L, Han Q, Hong Y, et al. Inhibition of miR-199a-5p rejuvenates aged mesenchymal stem cells derived from patients with idiopathic pulmonary fibrosis and improves their therapeutic efficacy in experimental pulmonary fibrosis. Stem Cell Res Ther. 2021;12(1):147. [77] WU X, GOU H, ZHOU O, et al. Human umbilical cord mesenchymal stem cells combined with pirfenidone upregulates the expression of RGS2 in the pulmonary fibrosis in mice. Respir Res. 2022;23(1):270. [78] CHU KA, WANG SY, YEH CC, et al. Reversal of bleomycin-induced rat pulmonary fibrosis by a xenograft of human umbilical mesenchymal stem cells from Wharton’s jelly. Theranostics. 2019;9(22):6646-6664. [79] LI R, ZHANG H, ZHANG J, et al. hucMSCs treatment ameliorated pulmonary fibrosis via downregulating the circFOXP1-HuR-EZH2/STAT1/FOXK1 autophagic axis. Stem Cells. 2023:sxad053. [80] ZHANG H, ZHU Q, JI Y, et al. hucMSCs treatment prevents pulmonary fibrosis by reducing circANKRD42-YAP1-mediated mechanical stiffness. Aging (Albany NY). 2023;15(12):5514-5534. [81] LIU D, KONG F, YUAN Y, et al. Decorin-Modified Umbilical Cord Mesenchymal Stem Cells (MSCs) Attenuate Radiation-Induced Lung Injuries via Regulating Inflammation, Fibrotic Factors, and Immune Responses. Int J Radiat Oncol Biol Phys. 2018;101(4):945-956. [82] MAHMOUDI T, ABDOLMOHAMMADI K, BASHIRI H, et al. Hydrogen Peroxide Preconditioning Promotes Protective Effects of Umbilical Cord Vein Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis. Adv Pharm Bull. 2020;10(1):72-80. [83] 苟好. EPCR基因敲低的人脐带间充质干细胞治疗博来霉素所致小鼠肺纤维化及机制初探[D].重庆:重庆医科大学,2018. [84] ZHANG X, YE L, TANG W, et al. Wnt/β-Catenin Participates in the Repair of Acute Respiratory Distress Syndrome-Associated Early Pulmonary Fibrosis via Mesenchymal Stem Cell Microvesicles. Drug Des Devel Ther. 2022;16:237-247. [85] ZHANG E, GENG X, SHAN S, et al. Exosomes derived from bone marrow mesenchymal stem cells reverse epithelial-mesenchymal transition potentially via attenuating Wnt/β-catenin signaling to alleviate silica-induced pulmonary fibrosis. Toxicol Mech Methods. 2021;31(9):655-666. [86] LEI X, HE N, ZHU L, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Radiation-Induced Lung Injury via miRNA-214-3p. Antioxid Redox Signal. 2021;35(11):849-862. [87] YANG S, LIU P, GAO T, et al. Every road leads to Rome: therapeutic effect and mechanism of the extracellular vesicles of human embryonic stem cell-derived immune and matrix regulatory cells administered to mouse models of pulmonary fibrosis through different routes. Stem Cell Res Ther. 2022;13(1):163. [88] SUN L, ZHU M, FENG W, et al. Exosomal miRNA Let-7 from Menstrual Blood-Derived Endometrial Stem Cells Alleviates Pulmonary Fibrosis through Regulating Mitochondrial DNA Damage. Oxid Med Cell Longev. 2019;2019:4506303. [89] TAN JL, LAU SN, LEAW B, et al. Amnion Epithelial Cell-Derived Exosomes Restrict Lung Injury and Enhance Endogenous Lung Repair. Stem Cells Transl Med. 2018; 7(2):180-196. [90] MANSOURI N, WILLIS GR, FERNANDEZ-GONZALEZ A, et al. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight. 2019;4(21):e128060. [91] ZHOU J, LIN Y, KANG X, et al. microRNA-186 in extracellular vesicles from bone marrow mesenchymal stem cells alleviates idiopathic pulmonary fibrosis via interaction with SOX4 and DKK1. Stem Cell Res Ther. 2021;12(1):96. [92] LI Y, SHEN Z, JIANG X, et al. Mouse mesenchymal stem cell-derived exosomal miR-466f-3p reverses EMT process through inhibiting AKT/GSK3β pathway via c-MET in radiation-induced lung injury. J Exp Clin Cancer Res. 2022;41(1):128. [93] WAN X, CHEN S, FANG Y, et al. Mesenchymal stem cell-derived extracellular vesicles suppress the fibroblast proliferation by downregulating FZD6 expression in fibroblasts via micrRNA-29b-3p in idiopathic pulmonary fibrosis. J Cell Physiol. 2020;235(11):8613-8625. [94] ROZIER P, MAUMUS M, MARIA ATJ, et al. Lung Fibrosis Is Improved by Extracellular Vesicles from IFNγ-Primed Mesenchymal Stromal Cells in Murine Systemic Sclerosis. Cells. 2021;10(10):2727. [95] BANDEIRA E, OLIVEIRA H, SILVA JD, et al. Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respir Res. 2018;19(1):104. [96] HOU L, ZHU Z, JIANG F, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles alleviated silica induced lung inflammation and fibrosis in mice via circPWWP2A/miR-223-3p/NLRP3 axis. Ecotoxicol Environ Saf. 2023;251:114537. [97] XU C, ZHAO J, LI Q, et al. Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Res Ther. 2020;11(1):503. [98] SHI L, REN J, LI J, et al. Extracellular vesicles derived from umbilical cord mesenchymal stromal cells alleviate pulmonary fibrosis by means of transforming growth factor-β signaling inhibition. Stem Cell Res Ther. 2021;12(1):230. [99] 杨静,胡华钟,张书勤,等.脐带间充质干细胞来源的外泌体通过抑制上皮间质转化缓解肺纤维化[J].南方医科大学学报,2020,40(7):988-994. [100] 韩艳煦. 磁化脐带间充质干细胞外泌体对特发性肺纤维化的治疗研究[D].长春:东北师范大学,2021. [101] ZHAO J, JIANG Q, XU C, et al. MiR-26a-5p from HucMSC-derived extracellular vesicles inhibits epithelial mesenchymal transition by targeting Adam17 in silica-induced lung fibrosis. Ecotoxicol Environ Saf. 2023;257:114950. [102] ZHAO Y, DU L, SUN J, et al. Exosomal miR-218 derived from mesenchymal stem cells inhibits endothelial-to-mesenchymal transition by epigenetically modulating of BMP2 in pulmonary fibrosis. Cell Biol Toxicol. 2023. doi: 10.1007/s10565-023-09810-z. [103] XU C, HOU L, ZHAO J, et al. Exosomal let-7i-5p from three-dimensional cultured human umbilical cord mesenchymal stem cells inhibits fibroblast activation in silicosis through targeting TGFBR1. Ecotoxicol Environ Saf. 2022;233:113302. [104] 李晗.缺氧预处理人脐带间充质干细胞来源外泌体通过miRNA-146a-5p调控SMAD4减轻肺纤维化的研究[D].长春:吉林大学,2023. [105] FURLANI D, UGURLUCAN M, ONG L, et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res. 2009;77(3):370-376. [106] WEISS ARR, DAHLKE MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs. Front Immunol. 2019;10:1191. [107] DJOUAD F, PLENCE P, BONY C, et al Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102(10): 3837-3844. [108] SIRITHAMMAJAK S, MANOCHANTR S, TANTRAWATPAN C, et al. Human Mesenchymal Stem Cells Derived from the Placenta and Chorion Suppress the Proliferation while Enhancing the Migration of Human Breast Cancer Cells. Stem Cells Int. 2022;2022:4020845. [109] HU C, ZHAO L, ZHANG L, et al. Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury. Stem Cell Res Ther. 2020;11(1):377. [110] ZHANG H, XIAO B, JIANG L, et al. Inhibition of mesenchymal stromal cells’ chemotactic effect to ameliorate paraquat-induced pulmonary fibrosis. Toxicol Lett. 2019;307:1-10. [111] LAN YW, CHOO KB, CHEN CM, et al. Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther. 2015;6(1):97. [112] LV Y, YU C, LI X, et al. ROS-activatable nanocomposites for CT imaging tracking and antioxidative protection of mesenchymal stem cells in idiopathic pulmonary fibrosis therapy. J Control Release. 2023;357:249-263. |
[1] | 余伟杰, 刘爱峰, 陈继鑫, 郭天赐, 贾易臻, 冯汇川, 杨家麟. 机器学习在腰椎间盘突出症诊治中的优势和应用策略[J]. 中国组织工程研究, 2024, 28(9): 1426-1435. |
[2] | 陈凯佳, 刘景云, 曹 宁, 孙建波, 周 燕, 梅建国, 任 强. 组织工程技术在股骨头坏死治疗中的应用及前景[J]. 中国组织工程研究, 2024, 28(9): 1450-1456. |
[3] | 林泽玉, 徐 林. 痛风致骨破坏机制的研究与进展[J]. 中国组织工程研究, 2024, 28(8): 1295-1300. |
[4] | 冯睿钦, 韩 娜, 张 蒙, 谷馨怡, 张丰识. 1%富血小板血浆联合骨髓间充质干细胞促进周围神经损伤的修复[J]. 中国组织工程研究, 2024, 28(7): 985-992. |
[5] | 邱晓燕, 李碧欣, 黎敬弟, 范垂钦, 马 廉, 王鸿武. MAFA-PDX1过表达慢病毒感染人脐带间充质干细胞向胰岛素分泌细胞的分化[J]. 中国组织工程研究, 2024, 28(7): 1000-1006. |
[6] | 刘麒薇, 张俊辉, 杨 袁, 王金娟. 脐带间充质干细胞治疗多囊卵巢综合征的作用及机制[J]. 中国组织工程研究, 2024, 28(7): 1015-1020. |
[7] | 刘建宏, 廖世杰, 李波香, 唐生平, 韦帧翟, 丁晓飞. 细胞外囊泡携带非编码RNA调控破骨细胞的活化[J]. 中国组织工程研究, 2024, 28(7): 1076-1082. |
[8] | 潘小龙, 樊飞燕, 应春苗, 刘飞祥, 张运克. 中药抑制间充质干细胞衰老的作用及机制[J]. 中国组织工程研究, 2024, 28(7): 1091-1098. |
[9] | 刘瀚峰, 王晶晶, 余云生. 人造外泌体治疗心肌梗死:应用现状及前景[J]. 中国组织工程研究, 2024, 28(7): 1118-1123. |
[10] | 诸葛晓萱, 李 策, 包广洁, 康 宏. 缝隙连接蛋白43经典与非经典作用在疾病治疗中的潜在价值[J]. 中国组织工程研究, 2024, 28(7): 1130-1136. |
[11] | 马树微, 何 生, 韩 冰, 张缭云. 间充质干细胞来源外泌体治疗动物急性肝衰竭的Meta分析[J]. 中国组织工程研究, 2024, 28(7): 1137-1142. |
[12] | 张克凡, 石 辉. 细胞因子治疗骨关节炎的研究现状及应用前景[J]. 中国组织工程研究, 2024, 28(6): 961-967. |
[13] | 李佳琪, 黄元礼, 李 妍, 王春仁, 韩倩倩. 非交联透明质酸分子质量降解的机制及影响因素[J]. 中国组织工程研究, 2024, 28(5): 747-752. |
[14] | 徐 溶, 王豪杰, 耿梦想, 孟 凯, 王 卉, 张克勤, 赵荟菁. 多孔聚四氟乙烯人工血管制备及功能化改性研究的进展[J]. 中国组织工程研究, 2024, 28(5): 759-765. |
[15] | 陈小芳, 郑国爽, 李茂源, 于炜婷. 可注射海藻酸钠水凝胶的制备及应用[J]. 中国组织工程研究, 2024, 28(5): 789-794. |
1.1.6 检索策略 中国知网和PubMed数据库检索策略见图1。
1.1.7 手工检索情况 无。
1.4 文献质量评估和数据的提取 根据文章题目及摘要进行初步筛选,排除与研究主题不符、发表年代久远以及重复文献,纳入112篇文献,重点对研究内容相关度高的58篇文献进行综述分析,其中中国知网数据库5篇,PubMed数据库53篇,具体检索流程见图2。
#br#
文题释义:
间充质干细胞:是一类多能性的成体干细胞,起源于间充质组织,主要存在于骨髓、脂肪组织、脐带以及其他组织中。这些干细胞具有自我更新和多向分化能力,可以分化为多种细胞类型,包括成骨细胞、软骨细胞、脂肪细胞和肌肉细胞等,已广泛应用于组织工程、再生医学和疾病治疗等领域。细胞外囊泡:是一类由细胞释放到细胞外的小型膜包裹的囊泡,其直径通常在30-1 000 nm之间。细胞外囊泡包含了细胞内部的生物活性分子,如蛋白质、核酸(RNA和DNA)、脂质等。这些囊泡可以通过与周围细胞进行物质交换,传递包含的生物信息,从而调节目标细胞的生物学功能和信号传导。细胞外囊泡在细胞间的通讯和信息传递中起着重要的作用,被认为是一种重要的细胞间通讯介质,对于维持组织稳态和参与疾病发生发展具有重要意义。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
现有研究证明间充质干细胞及其细胞外囊泡对于不同模型或不同疾病所致的肺纤维化存在一定的治疗效果和机制上的差异。这些差异可以归因于由于动物模型的差异、疾病病理机制的差异、造模药物浓度以及时间所造成的炎症程度、组织损伤程度差异以及细胞外囊泡和间充质干细胞来源不同等因素导致的。实验设计和方法的差异也会对实验结果造成差异。因此,在进行治疗效果评估时,需要综合考虑这些因素,并进行更多的研究以进一步了解和优化治疗策略。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||