[1] Anderson DG,Albert TJ, Fraser JK,et al. Cellular therapy for disc degeneration. Spine (Phila Pa 1976).2005;30(17 Suppl): S14-19.
[2] Maniadakis N, Gray A.The economic burden of back pain in the UK.Pain. 2000;84(1): 95-103.
[3] Bradford DS,Berven SH, Hu S.Intervertebral Disc Replacement: A Role in the Management of Chronic Low Back Pain Caused by Degenerative Disc Disease. Spine (Phila Pa 1976).2004;2002: 1.
[4] Oliver J, Middleditch A. Functional Anatomy of the Spine. Elsevier. 1991: 336.
[5] Di Martino A,Vaccaro A,Lee JY,et al.Nucleus pulposus replacement - Basic science and indications for clinical use.Spine (Phila Pa 1976). 2005;30(8): 16-22.
[6] Gan JC,Ducheyne P,Vresilovic EJ,et al.Intervertebral disc tissue engineering I: characterization of the nucleus pulposus.Clin Orthop Relat Res. 2003;411(6): 305-314.
[7] Bibby SR,Urban JP.Effect of nutrient deprivation on the viability of intervertebral disc cells.Eur Spine J. 2004;13(12): 695-701.
[8] Martin MD,Boxell CM,Malone DG.Pathophysiology of lumbar disc degeneration: a review of the literature.Neurosurg Focus. 2002;13(8): 1.
[9] Stokes IA, Iatridis JC .Mechanical conditions that accelerate intervertebral disc degeneration: Overload versus immobilization. Spine (Phila Pa 1976).2004;29(12): 2724-2732.
[10] Richardson SM,Mobasheri A,Freemont AJ,et al.Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies.Histol Histopathol. 2007;22: 1033-1041.
[11] Huang KY,Yan JJ,Hsieh CC,et al.The in vivo biological effects of intradiscal recombinant human bone morphogenetic protein-2 on the injured intervertebral disc: an animal experiment.Spine (Phila Pa 1976). 2007;32:1174-1180.
[12] Taqieddin E,Amiji M.Enzyme immobilization in novel alginate- chitosan core-shell microcapsules.Biomaterials.2004;25(10): 1937-1945.
[13] Tritz-Schiavi J,Charif N,Henrionnet C,et al.Original approach for cartilage tissue engineering with mesenchymal stem cells. Biomed Mater Eng. 2010;20(3):167-174.
[14] Kim D,Monaco E,Maki A,et al.Morphologic and transcriptomic comparison of adipose- and bone-marrow-derived porcine stem cells cultured in alginate hydrogels.Cell Tissue Res. 2010; 341(3): 359-370.
[15] Shao X,Hunter CJ. Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells.J Biomed Mater Res A.2007;82(3):701-710.
[16] Di Martino A,Sittinger M,Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983-5990.
[17] Cho J,Heuzey MC, Bégin A,et al. Physical gelation of chitosan in the presence of beta-glycerophosphate:the effect of temperature.Biomacromolecules. 2005;6:3267-3275.
[18] Nair LS,Starnes T,Ko JW,et al.Development of injectable thermogelling chitosan-inorganic phosphate solutionsfor biomedical applications. Biomacromolecules.2007;8: 3779-3785.
[19] Bader RA,Rochefort WE. Rheological characterization of photopolymerized poly (vinyl alcohol) hydrogels for potential use in nucleus pulposus replacement. J Biomed Mater Res A. 2008;86:494-501.
[20] Roughley P,Hoemann C,DesRosiers E,et al.The potential of chitosan-based gels containingintervertebral disc cells for nucleus pulposus supplementation. Biomaterials. 2006;27: 388-396.
[21] Richardson SM,Hughes N,Hunt JA,et al.Human mesenchymal stem cell differentiation to NP-like cells in chitosan–glycerophosphate hydrogels. Biomaterials.2008; 29:85-93.
[22] Sato M,Kikuchi T,Asazuma T,et al. Glycosaminoglycanaccumulation in primarycultureof rabbit intervertebral disc cells. Spine (Phila Pa 1976).2001;26(24): 2653-2660.
[23] Gruber HE,Fisher EC Jr,Desai B,et al. Human intervertebral disc cells from the annulus:three-dimensional culture in agaroseor alginate and responsiveness to TGF-beta1. Exp Cell Res.1997;235(1): 13-21.
[24] Gruber HE,Jolmson T,NDrton HJ,et al. The sand rat model for disc degeneration: radiologic characterization of age-related changes: cross-sectional and prospective analyses.Spine (phila Pa 1976).2002;27(3):230-234.
[25] Sato M ,Kikuchi M,Ishihara M, et al. Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS scaffold).Med Biol Eng Comput.2003;41(3): 365-371.
[26] Sha'ban M,Yoon SJ,Ko YK,et al.Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly (lactic-co-glycolic acid) scaffold.J Biomater Sci Polym Ed.2008;19(9):1219-1237.
[27] Gruber HE,Leslie K,Ingram J,et al.Cell-based tissueengineering for the intervertebral disc: in vitrostudies of humandisccell geneexpression and matrix production within selected cell carriers. Spine (Phila Pa 1976).2004;4(1): 44-55.
[28] Seguin CA,Grynpas MD,Pilliar RM,et al.Tissue engineered nucleus pulposus tissue formed on aporous calcium polyphosphate substrate.Spine (Phila Pa 1976).2004; 29(12): 1299-1306.
[29] Crevensten G,Walsh AJ,Ananthakrishnan D,et al.Intervertebal disc cell therapy for regeneration; mesenchymal stem cell implantation in rat intervertebral dicss,Ann Bioned Eng. 2004; 32(3);430-434
[30] Mizuno H,Roy AK,V acanti CA,et al. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine (Phila Pa 1976). 2004; 29(12):1290-1297.
[31] Alini M,Li W,Markovic P,et al.The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine (Phila Pa 1976).2003; 28(5):446-454
[32] Huang B,Li CQ,Zhou Y,et al. Collagen Ⅱ/hyaluronan/ chon-droitin-6-sulfate tri-copolymer scaffold for nucleus pulposustissue engineering.J Biomed Mater Res B Appl Biomater.2010;92(2):322-331.
[33] Abbushi A,Endres M,Cabraja M,et al.Regeneration of intervertebral disc tissue by resorbable cell-free polyglycolic acid-based implants in a rabbit model of disc degeneration. Spine (Phila Pa 1976).2008;33(14):1527-1532.
[34] Stern S,Lindenhayn K,Schultz O,et al.Cultivation of porcine cells from the nucleus pulposus inafibrin/Hyaluronic acid matrix. Acta Orthop Scand. 2000; 71(5): 496-502.
[35] Wan Y,Feng G,Shen FH,et al. Novel biodegradable poly(1,8-octanediol malate) for annulus fibrosus regeneration.Macromol Biosci.2007;7(11).1217-1224.
[36] Wan Y,Feng G,Shen FH,et al.Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials.2008;29 (6):643.
[37] Joung YK,Bae JW,Park KD.Controlled release of heparin-binding growth factors using heparin-containing particulate sys-tems for tissue regeneration. Expert Opin Drug Deliv.2008;5:1173-1184.
[38] Nie H,Wang CH.Fabrication and characterization ofPLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.J Control Release.2007;120:111-121.
[39] Murugesan S,Xie J,Linhardt RJ .Immobilization of hep-arin: approaches and applications. Curr Top Med Chem.2008; 8(2):80-100.
[40] Benoit DS,Collins SD,Anseth KS.Multifunctional hydrogels that promote osteogenic hMSC differentiation throughstimulation and sequestering of BMP2. Adv Funct Mater.2007;17(13):2085-2093.
[41] Edlund U,Dånmark S,Albertsson AC.A strategy for thecovalent functionalization of resorbable polymers with heparinand osteoinductive growth factor. Biomacromolecules. 2008;9(3):901-905.
[42] Furue MK,Na J,Jackson JP,et al.Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci USA. 2008;105:13409-13414.
[43] Joung YK,Bae JW,Park KD.Controlled release of heparin-binding growth factors using heparin-containing particulate sys-tems for tissue regeneration. Expert Opin Drug Deliv.2008;5:1173-1184.
[44] Li J,Zhu B,Shao Y,et al.Construction of anticoagulant poly (lactic acid) films via surface covalent graftof heparin-carrying microcapsules. Colloids Surf B Biointerfaces.2009;70(1): 15-19.
[45] Luo X,Qiu D,He B,et al.Biodegradableheparin-loaded microspheres: carrier molecular composition andmicrosphere structure.Macromol Biosci.2009;6(5):373-381.
[46] Nie T,Akins RE Jr,Kiick KL. Production of heparin-containing hydrogels for modulating cell responses.Acta Biomater.2009; 5(3):865-875. |