中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (34): 5045-5050.doi: 10.3969/j.issn.2095-4344.2016.34.005

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

纳米羟基磷灰石牙体修复材料的生物性能

黄 涛1,陈 汉2   

  1. 1哈励逊国际和平医院口腔科,河北省衡水市  0530002河北医科大学第二医院口腔科,河北省石家庄市 050005
  • 收稿日期:2016-06-03 出版日期:2016-08-19 发布日期:2016-08-19
  • 作者简介:黄涛,男,1975年生,河北省邯郸市人 汉族,主治医师,主要从事口腔医学研究。
  • 基金资助:

    河北省卫生厅指令计划项目(20130013)

Biological properties of nanohydroxyapatite composite for dental restoration

Huang Tao1, Chen Han2   

  1. 1Department of Stomatology, Harrison International Peace Hospital, Hengshui 053000, Hebei Province, China; 2Department of Stomatology, Second Hospital of Hebei Medical University, Shijiazhuang 050005, Hebei Province, China
  • Received:2016-06-03 Online:2016-08-19 Published:2016-08-19
  • About author:Huang Tao, Attending physician, Department of Stomatology, Harrison International Peace Hospital, Hengshui 053000, Hebei Province, China
  • Supported by:

    the Planned Project of Hebei Provincial Health Department, No. 20130013

摘要:

文章快速阅读:

 

文题释义:
纳米级羟基磷灰石材料
:与人体内组织成分更为相似,具有更佳的生物性能。纳米羟基磷灰石晶体结构与天然骨的无机成分相似,与人体细胞膜表层多糖和蛋白质以氢键结合,无细胞毒性,具有高度的生物相容性和优良的成骨活性。目前纳米羟基磷灰石被广泛应用于临床多个专业,尤其是在体液作用下,纳米羟基磷灰石会出现降解,释放出处于游离状态的钙和磷,并被人体组织吸收和利用,进而形成新的组织,发挥出骨传导作用。
理想的骨替代材料:需满足以下条件:有良好的生物相容性;有骨传导和骨诱导特征;不会传播感染性疾病;抗原性应最小;使用方便;费用低;易消毒性等。但现在应用于临床及实验中的各种材料,却没有一种能够完全符合上述标准。

背景:纳米羟基磷灰石的成分与天然骨十分接近,且具有纳米材料的特点,被广泛应用各种骨缺损修复治疗中。
目的:通过细胞毒性实验检测纳米羟基磷灰石牙体修复材料的细胞毒性,并观察其修复动物牙槽骨缺损的效果。
方法:①体外实验:采用10%、50%、100%浓度的纳米羟基磷灰石材料浸提液(或羟基磷灰石材料浸提液)分别培养牙周膜成纤维样细胞与L-929细胞各7 d,分析材料的细胞毒性;②体内实验:取成年家兔45只,制备牙槽骨缺损模型后随机分组,实验组于骨缺损处置入纳米羟基磷灰石,对照组置入羟基磷灰石,空白对照组不置入任何材料。术后1,2,3周观察各组新骨形成情况。
结果与结论:①体外实验结果:不同浓度的纳米羟基磷灰石材料浸提液与细胞发生直接接触之后,细胞毒性在0至1级之间,未发生细胞毒性;②体内实验结果:随着时间的延长,3组新生骨所占视野总面积比例均不断上升,实验组不同时间点的新生骨多于对照组、空白对照组(P < 0.05);③结果表明:纳米羟基磷灰石材料无细胞毒性,并且可促进牙槽骨缺损修复。
ORCID: 0000-0003-2890-7096(黄涛)

关键词: 生物材料, 纳米材料, 纳米羟基磷灰石, 细胞毒性, 牙槽骨缺损, 骨缺损修复

Abstract:

BACKGROUND: Nanohydroxyapatite composition is similar to that of the natural bone, and because of its characteristics of nanomaterials, it has been widely used in the bone defect repair.
OBJECTIVE: To observe the effect of nanohydroxyapatite composite materials in the repair of alveolar bone defect in animal models by detecting its cytotoxicity.
METHODS: (1) In vitro experiment: nanohydroxyapatite extracts with concentrations of 10%, 50%, 100% (or hydroxyapatite leaching extracts) were used to culture periodontal ligament fibroblast-like cells and L-929 cells for 7 days, respectively, followed by cell cytotoxicity analysis. (2) In vivo experiment: 45 adult rabbits were used to make animal models of alveolar bone defects and then were randomized into three groups: experimental group implanted with nanohydroxyapatite, control group with hydroxyapatite, and blank control group with no implant material. New bone formation was observed at 1, 2 and 3 weeks after operation.
RESULTS AND CONCLUSION: (1) In vitro experiment: after directly cultured with 10%, 50%, 100% nanohydroxyapatite extracts, the cell cytotoxicity was graded 0 to 1, indicating no presence of cytotoxicity. (2) In vivo experiment: in the three groups, the percentage of new bone area accounting for the total visual field was gradually in a rise over time. Moreover, the amount of new bone tissues was higher in the experimental group than the other two groups at different time (P < 0.05). These findings demonstrate that the nanohydroxyapatite materials have no cytotoxicity that can be used to promote the repair of alveolar bone defects.

 

Key words: Nanostructures, Hydroxyapatites, Tissue Engineering

中图分类号: