中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (34): 5051-5056.doi: 10.3969/j.issn.2095-4344.2016.34.006

• 细胞外基质材料 extracellular matrix materials • 上一篇    下一篇

脱细胞基质材料制备方法及在骨关节软骨损伤修复中的应用

赵玉果1,李明明2   

  1. 1南阳市中心医院,河南省南阳市 473000;2郑州大学第一附属医院,河南省郑州市  450001
  • 收稿日期:2016-06-12 出版日期:2016-08-19 发布日期:2016-08-19
  • 作者简介:赵玉果,男,1982年生,河南省南阳市人,汉族,2009年郑州大学毕业,硕士,主治医师,主要从事骨关节损伤及脊柱微创的临床研究。

Tissue-engineered acellular matrix material: preparation and application in articular cartilage repair

Zhao Yu-guo1, Li Ming-ming2   

  1. 1Central Hospital of Nanyang, Nanyang 473000, Henan Province, China;  2First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
  • Received:2016-06-12 Online:2016-08-19 Published:2016-08-19
  • About author:Zhao Yu-guo, Master, Attending physician, Central Hospital of Nanyang, Nanyang 473000, Henan Province, China

摘要:

文章快速阅读:

 

文题释义:
脱细胞基质
:是将同种异体组织经过脱细胞工艺处理后,去除能够引起免疫排斥反应的抗原成分,同时完整地保留细胞外基质的三维空间结构及一些对细胞分化有重要作用的生长因子,如成纤维细胞生长因子2、转化生长因子β、血管内皮生长因子等。经过处理的细胞外基质材料具有良好的机械力学性能,该材料的组织相容性好,植入体内没有免疫排斥现象,在体内起着支持、连接细胞的作用,同时其三维的空间结构及细胞因子有利于细胞的黏附和生长。
关节软骨:属于透明软骨,表面光滑,呈淡蓝色,有光泽,它是由一种特殊的叫做致密结缔组织的胶原纤维构成的基本框架,这种框架呈半环形,类似拱形球门,其底端紧紧附着在下面的骨质上,上端朝向关节面,这种结构使关节软骨紧紧与骨结合起来而不会掉下来,同时当受到压力时候,还可以有少许的变形,起到缓冲压力的作用。

 

 


背景:研究显示,组织脱细胞基质与正常细胞外基质相比能够在机体内诱导上皮细胞、平滑肌细胞,促进其演化为机体的一部分。
目的:观察脱细胞基质组织工程材料在骨关节软骨损伤修复中的应用效果。
方法:采用随机对照方法将30只新西兰大白兔分为纤维样组织组和脱细胞基质组织组,每组15只,在大白兔股骨髁部建立直径为4 mm的骨关节软骨缺损模型。用牛膝关节软骨制备软骨脱细胞基质支架,脱细胞基质组织组采用脱细胞软骨基质支架修复;纤维样组织组采用纤维样组织修复,比较两组不同组织修复效果。
结果与结论:①脱细胞基质组织工程材料交联后呈现为深蓝色,疏松多孔,直径为5 mm,硬度适中,具备一定的弹性;②苏木精-伊红染色不含有细胞碎屑及蓝染的核物质,不存在残留的细胞外基质;③甲苯胺蓝染色为蓝色材料支架孔隙率为90%,溶胀率为(1 314±337)%;④脱细胞基质组织组材料1,3,5,7,9 d的A值显著高于纤维样组织组(P < 0.05);⑤兔纤维样组织组缺损明显,纤维瘢痕基本形成并充填在缺损中。脱细胞基质组织组修复12周后缺损部位存在白色组织覆盖,表面光滑,缺损面基本修复,与正常组织边界不明显。甲苯甘蓝染色显示蓝染,细胞细小变平,软骨下骨骨结构与软骨连接良好,直接基本降解;⑥结果提示:脱细胞基质组织工程材料具有良好的生物相容性、细胞吸附性以及亲水性而在骨关节软骨损伤修复中得到应用,能促进损伤部位的修复效果,是一种适用于骨关节软骨损伤的修复材料。

关键词: 生物材料, 软骨生物材料, 细胞基质, 骨关节软骨损伤, 修复, 纤维样组织

Abstract:

BACKGROUND: It has been reported that tissue-engineered acellular matrix can induce and promote epithelial cells and smooth muscle cells to evolve into a part of body in vivo compared with the normal extracellular matrix.
OBJECTIVE: To investigate the effect of tissue-engineered acellular matrix in articular cartilage repair.
METHODS: Totally 30 New Zealand rabbits were randomly allotted to fibroid tissue and acellular matrix groups (n=15 per group), and then articular cartilage defect models, 4 mm in diameter, were established at the white rabbit femoral condyle. Acellular cartilage matrix scaffold was prepared using bovine knee cartilage, and model rats in the acellular matrix group were repaired with acellular cartilage matrix scaffold and the others in the fibroid tissue group repaired with fibroid tissues. Finally, repair effects between two groups were compared.
RESULTS AND CONCLUSION: The dark blue and porous tissue-engineered acellular matrix material could be found, with a diameter of 5 mm and moderate hardness, and exhibited certain flexibility after cross-linking. Hematoxylin-eosin staining showed that cell debris, blue-stained nuclear materials and residual extracellular matrix disappeared. Toluidine blue staining found that the porosity of the blue scaffold was 90%, and the swelling ratio was (1 314±337)%. The absorbance value in the acellular matrix group was significantly higher than that in the fibroid tissue group at 1, 3, 5, 7 and 9 days (P < 0.05). In the fibroid tissue group, defects filled with newborn fibrous scars were overt. By contrast, in the acellular matrix group, the white tissues covered the defect region with smooth surface, and the wound was basically healed, with an unclear boundary after 12 weeks. Moreover, blue-stained, small flattened cells appeared, subchondral bone structure was connected well with the cartilage, and the scaffold was directly degraded. In conclusion, the tissue-engineered acellular matrix material exhibits good biocompatibility, cell adsorption and hydrophilicity, and can promote the defect repair after articular cartilage injury. Therefore, it is a suitable substitute for articular cartilage repair.

Key words: Bone, Cartilage, Articular, Tissue Engineering

中图分类号: