中国组织工程研究 ›› 2021, Vol. 25 ›› Issue (10): 1517-1521.doi: 10.3969/j.issn.2095-4344.3063

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

氧化锆基纳米羟基磷灰石功能梯度生物材料的微观形貌和物相分析

王  倩1,李  璐2,舒静媛1,董志恒1,靳友士1,王青山1   

  1. 1滨州医学院附属医院,山东省滨州市   256603;2 东营市东营区新区医院,山东省东营市  257000
  • 收稿日期:2020-05-11 修回日期:2020-05-15 接受日期:2020-06-13 出版日期:2021-04-08 发布日期:2020-12-17
  • 通讯作者: 王青山,教授,主任医师,滨州医学院附属医院儿童口腔科,山东省滨州市 256603
  • 作者简介:王倩,女,1990 年生,汉族,山东省滨州市人,硕士,主要从事口腔材料学研究。
  • 基金资助:
    山东省自然科学基金(ZR2018LH010)

Micro-morphology and phase of zirconia-based nano-hydroxyapatite functional gradient biomaterials

Wang Qian1, Li Lu2, Shu Jingyuan1, Dong Zhiheng1, Jin Youshi1, Wang Qingshan1    

  1. 1Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China; 2Dongying District New District Hospital, Dongying 257000, Shandong Province, China 
  • Received:2020-05-11 Revised:2020-05-15 Accepted:2020-06-13 Online:2021-04-08 Published:2020-12-17
  • Contact: Wang Qingshan, Professor, Chief physician, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
  • About author:Wang Qian, Master, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
  • Supported by:
    the Natural Science Foundation of Shandong Province, No. ZR2018LH010

摘要:

文题释义:
生物功能梯度材料:通过梯度功能技术将2种或2种以上的生物材料复合成的新型非均质生物材料,整体上材料从一种成分过渡到另一种成分,其内部则是这2种或多种成分多层次、不同比例混合后的单向逐渐梯度过渡,通过连续性、梯度性改变复合材料的组成和结构,能够弱化材料间不匹配因素,缓和应力分布,从而使各生物材料牢固的结合并充分发挥它们的优势性能。
X射线衍射:X射线通过晶体时在某些特殊方向上产生强衍射,衍射线在空间分布的强度和方位与晶体结构密切相关,利用此原理可测定分析物相、结晶度,还可对点阵参数进行精密测定。
微观形貌:利用扫描电镜观测到的物体真实、清晰并富有立体感的细微结构,反映物体精细的表面形态和复杂立体结构,在陶瓷材料中可观察到晶相能分辨晶体大小、取向、分布情况及杂质、气孔及其分布等。

背景:新型氧化锆基纳米羟基磷灰石生物梯度功能陶瓷具备层间结合牢固、抗压和抗剪切强度高的机械性能,但其生物学性能尚待研究。
目的:应用扫描电镜和X射线衍射仪检测氧化锆基纳米羟基磷灰石生物梯度功能陶瓷的微观形貌和物相。
方法:将圆柱状氧化锆基纳米羟基磷灰石生物梯度功能陶瓷用高速手机纵向剖成薄片状试件,用细砂纸对剖面(各层相交面)进行打磨抛光,喷金后采用扫描电镜观察表面微观形貌及分层结构;将试件在玛瑙研钵体研磨成粉末状,纱布过滤后筛取粒度较小的陶瓷粉末,采用X射线衍射仪进行物相分析。
结果与结论:①扫描电镜显示,梯度层间结合紧密,晶粒体积基本均一,有少量氧化锆团聚,越靠近表面层纳米羟基磷灰石含量越高,且有均匀的小孔隙;②X射线衍射仪检测显示,主要以四方相氧化锆和纳米羟基磷灰石衍射峰为主,另有少量β-磷酸三钙、α-磷酸三钙、CaZrO3和单斜相氧化锆晶体;③结果间接表明,表层纳米羟基磷灰石在梯度层过渡下与氧化锆基体层结合牢固,氧化锆基纳米羟基磷灰石梯度功能生物材料是一种力学和生物学性能优良的陶瓷材料。
0000-0001-6969-6542 (王倩) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 骨, 材料, 氧化锆, 纳米羟基磷灰石, 梯度功能材料, 生物材料, 生物陶瓷, X射线衍射仪, 扫描电镜

Abstract: BACKGROUND: The successfully prepared zirconia-based nano-hydroxyapatite functional gradient bioceramics has mechanical properties of strong interlayer bonding, high compressive and shear strength, but its biological properties are yet to be studied.
OBJECTIVE: To detect the micro-morphology and phase of the zirconia-based nano-hydroxyapatite functional gradient bioceramics using scanning electron microscope and X-ray diffractometer.
METHODS: Cylindrical zirconia-based nano-hydroxyapatite functional gradient bioceramics were longitudinally sectioned into thin-shaped specimens with turbine handpieces. The profile (intersections of layers) was polished with sandpaper. Its surface micro-morphology and layered structure were observed with a scanning electron microscope after spraying gold. The test piece was ground into a powder in an agate mortar and filtered with gauze. Ceramic powder was sieved with smaller particle size for phase analysis with X-ray diffractometer.
RESULTS AND CONCLUSION: (1) Scanning electron microscopy showed that the gradient layers were tightly bound. The grain volume was basically uniform. There was a small amount of ZrO2 agglomeration. The closer to the surface layer, the higher the nHA content and the uniform small pores. (2) The X-ray diffractometer detected mainly the tetragonal phase ZrO2 and nHA diffraction peaks, and a small amount of β-TCP, α-TCP, CaZrO3 and a small amount of monoclinic phase ZrO2 crystal. (3) The research results indirectly indicate that the surface layer nHA is firmly bonded to the ZrO2 matrix layer under the transition of the gradient layer. ZrO2 based nHA functional gradient biomaterial is a ceramic material with excellent mechanical and biological properties.

Key words: bone">, materials">, zirconia">, nano hydroxyapatite">, functionally gradient materials">, biomaterials">, bioceramics">, X-ray diffraction">, scanning electron microscopy

中图分类号: