中国组织工程研究 ›› 2020, Vol. 24 ›› Issue (10): 1528-1533.doi: 10.3969/j.issn.2095-4344.2234

• 纳米生物材料 nanobiomaterials • 上一篇    下一篇

氧化锆基纳米羟基磷灰石功能梯度材料的制备及力学检测

牛月月1,王春燕1,舒静媛1,崔颖颖1,刘  贞1,高  艳2,王  倩1,王青山1   

  1. 1滨州医学院附属医院,山东省滨州市  256603;2滨州医学院,山东省烟台市  264003
  • 收稿日期:2019-05-31 修回日期:2019-06-04 接受日期:2019-07-15 出版日期:2020-04-08 发布日期:2020-02-15
  • 通讯作者: 王青山,教授,主任医师,滨州医学院附属医院儿童口腔科,山东省滨州市 256603
  • 作者简介:牛月月,女,1993 年生,汉族,山东省滨州市人,硕士,主要从事口腔材料学研究。
  • 基金资助:
    山东省自然科学基金(ZR2018LH010);山东省医药卫生科技发展计划项目(2013WS0308)

Preparation and mechanical properties of zirconia-based nano-hydroxyapatite functionally graded material

Niu Yueyue1, Wang Chunyan1, Shu Jingyuan1, Cui Yingying1, Liu Zhen1, Gao Yan2, Wang Qian1, Wang Qingshan1   

  1. 1Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China; 2Binzhou Medical University, Yantai 264003, Shandong Province, China
  • Received:2019-05-31 Revised:2019-06-04 Accepted:2019-07-15 Online:2020-04-08 Published:2020-02-15
  • Contact: Wang Qingshan, Professor, Chief physician, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
  • About author:Niu Yueyue, Master, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
  • Supported by:
    the Natural Science Foundation of Shandong Province, No. ZR2018LH010; the Medical Science and Technology Development Project, No. 2013WS0308

摘要:

文题释义:
功能梯度材料:将2种或2种以上的材料采用梯度复合技术,使其组成和结构由一侧向另一侧呈连续梯度变化,以减小及克服结合部位的性能不匹配现象,达到内部界面消失,材料的性能相应于组成和结构的变化也呈现梯度变化。
氧化锆陶瓷:目前被认为是硬度最大、耐磨性能最好的陶瓷材料之一,具有良好的生物活性、力学性能以及良好的抗热传导性和抗腐蚀性,近年来关于该生物性陶瓷的研究越来越多,该材料广泛应用于医疗、保健、纺织、耐火材料等领域。

背景:研究表明在氧化锆基体表面涂覆纳米羟基磷灰石涂层,既具有较高的强度和韧性又具有良好的生物相容性,是较为理想的硬组织替代材料,但涂层易从氧化锆表面脱落成为其致命缺陷。

目的:应用梯度复合技术制备以纯氧化锆为基体、中间为梯度层、表面为纯纳米羟基磷灰石的功能梯度生物陶瓷,并筛选其最佳力学性能的设计方案及烧结温度。

方法:以氧化锆和纳米羟基磷灰石粉末为原料,应用粉末冶金法中的叠层法制备陶瓷生坯试件,根据基体氧化锆层厚度的不同分为 A组(40 mm)、B组(30 mm)、C组(20 mm),每组又根据氧化锆/纳米羟基磷灰石复合材料梯度层数的不同分为1组(3层)、2组(5层)、3组(7层),9组共162个陶瓷生坯试件,分别将坯体以不同温度烧结(1 300,1 350,1 400,1 450,1 500,1 550 ℃)为陶瓷试件,将其加工成矩形试样进行力学性能检测。

结果与结论:①采用10 MPa单面垂直加压可形成氧化锆基纳米羟基磷灰石梯度功能材料生坯试件;②随着梯度层数及烧结温度的增加,各组功能梯度生物陶瓷的力学性能随之增强,当烧结温度为1 550 ℃时,梯度层数为7、基体厚度为40 mm的功能梯度生物陶瓷力学性能最优,与其他8组比较差异有显著性意义(P < 0.05);③按最佳梯度设计方案,采用高温烧结技术制备的氧化锆基纳米羟基磷灰石功能梯度材料陶瓷试件具有较高的力学性能。

ORCID: 0000-0001-6925-4998(牛月月)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程


关键词: 氧化锆, 纳米羟基磷灰石, 功能梯度材料, 硬组织替代, 烧结, 陶瓷, 弯曲强度, 剪切强度, 生物相容性, 生物活性

Abstract:

BACKGROUND: Studies have shown that the nano-hydroxyapatite coating on the surface of zirconia has not only high strength and toughness, but also good biocompatibility. It is an ideal substitute for hard tissue. However, the coating is easy to fall off from the surface of zirconia, which is a fatal defect.

OBJECTIVE: To prepare functionally graded bioceramics with pure zirconia as matrix, gradient layer in the middle and nano-hydroxyapatite on the surface by gradient composite technology and to screen the optimal mechanical properties and sintering temperature.

METHODS: Using zirconia and nano hydroxyapatite powder as raw materials, ceramic specimens were prepared by the lamination method in powder metallurgy. According to the thickness of zirconia layer, three groups A (40 mm), B (30 mm) and C (20 mm) were designated. Each group was sub-divided into three subgroups 1 (3 layers), 2 (5 layers) and 3 (7 layers). Thus, there were 162 ceramic specimens in nine subgroups. The ceramic specimens were sintered at different temperatures (1 300, 1 350, 1 400, 1 450, 1500, and 1 550 °C) and then processed into rectangular specimens for mechanical property testing.

RESULTS AND CONCLUSION: The zirconia-based nano-hydroxyapatite functionally graded material can be formed by 10 MPa single side vertical pressure. With the increases in the number of gradient layers and sintering temperature, the mechanical properties of the functionally graded bioceremics in each group were enhanced. The functionally graded bioceramics had the optimal mechanical properties when sintering temperature was 1 550 °C, the number of gradient layers was 7, and substrate thickness was 40 mm. The optimal mechanical property of the functionally graded bioceramics produced at above parameter was significantly superior to that produced at other eight sets of parameters (P < 0.05). According to the optimal gradient design, the zirconia-based nano-hydroxyapatite functionally graded ceramic specimens prepared by high temperature sintering technique have stronger mechanical properties.

Key words: zirconia, nano-hydroxyapatite, functionally graded material, hard tissue substitute, sintering, ceramics, bending strength, shearing strength, biocompatibility, bioactivity

中图分类号: