中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (20): 3117-3122.doi: 10.3969/j.issn.2095-4344.0833

• 骨组织构建 bone tissue construction •    下一篇

振动促进骨愈合系统的参数识别及动力学特征

曲云霞1,马文博1,张  弢2,侯书军1,李  慨1,李欣业1,刘彦士2   

  1. 1河北工业大学机械工程学院,天津市  300130;2天津市天津医院创伤骨科,天津市  300211
  • 收稿日期:2018-02-21 出版日期:2018-07-18 发布日期:2018-07-18
  • 通讯作者: 侯书军,博士,教授,河北工业大学机械工程学院,天津市 300130
  • 作者简介:曲云霞,女,1969年生,河北省承德市人,汉族,2009年河北工业大学机械设计及理论专业毕业,博士,教授,主要从事并联机构、振动利用等领域的研究。

Parameter identification and kinetics of the vibration in promoting bone healing system

Qu Yun-xia1, Ma Wen-bo1, Zhang Tao2, Hou Shu-jun1, Li Kai1, Li Xin-ye1, Liu Yan-shi2   

  1. 1School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China; 2Department of Orthopedics, Tianjin Hospital, Tianjin 300211, China
  • Received:2018-02-21 Online:2018-07-18 Published:2018-07-18
  • Contact: Hou Shu-jun, Ph.D., Professor, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
  • About author:Qu Yun-xia, Ph.D., Professor, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China

摘要:

文章快速阅读:

文题释义:
参数辨识:是根据实验数据和建立的模型来确定一组参数值,使得由模型计算得到的数值结果能最好的拟合测试数据(曲线拟合问题),从而可以为生产过程进行预测,提供一定的理论指导。当计算得到的数值结果与测试值之间的误差较大时,就认为该数学模型与实际的过程不符或者差距较大,进而修改模型,重新选择参数。因此,参数辨识问题是一个逆问题,参数估计的好坏决定了用模型来解释实际问题的可信度。
骨应力刺激仪:应力刺激通过足底经肢体纵轴传导,能够在骨折端产生压应力,从而达到改善骨折处的生物学和生物力学环境,有效克服应力遮挡,促进骨折愈合的效果。
摘要
背景
:骨折愈合是一个极其复杂的生物学修复重建过程,骨折端局部的力学环境在骨折愈合过程中起着调控作用。
目的:设计一部骨应力刺激仪并进行动力学建模及参数的识别。
方法:基于振动促进骨愈合的机制,设计了一部骨应力刺激仪。简化成了二自由度带阻尼的弹簧系统强迫振动模型,对振动促进骨愈合系统进行了主要参数的识别(橡胶弹簧的总刚度K_1的识别,足底肌肉刚度K_2的识别,足底肌肉阻尼r_1的识别,克氏针弯曲刚度K^'的识别),得到了模拟骨痂处的振幅并进行振动促进骨愈合系统实验。
结果与结论:①通过理论分析及试验研究并结合样机的稳定工作区间,确定了该系统在激振频率为26-40 Hz、激振力为100-350 N的条件下可使胫骨骨折断端产生轴向微动,在断骨界面产生了一定的力学刺激;②由于仿真时忽略了外固定架对骨痂处振幅的应力遮挡作用,所以仿真结果略高于测试结果。通过拆开外固定架进行测试,拆开后骨痂处的振幅大于完全固定的振幅;③结果表明,骨应力刺激仪可使骨折断端产生有利于骨愈合的微动。在临床上建议使用轴向刚度可调、径向刚度不变外固定支架,可以有效的克服应力遮挡。

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松组织工程
ORCID: 0000-0003-3700-6052(曲云霞)

关键词: 振动, 骨愈合, 骨应力刺激仪, 动力学, 组织构建

Abstract:

BACKGROUND: Fracture healing is an extremely complex process in biological repair and reconstruction. Local mechanical environment of the fracture site plays a regulatory role in the process of fracture healing.
OBJECTIVE: To design a bone stress stimulator and to carry out the dynamics modeling and parameter identification.
METHODS: Based on the mechanism of vibration in promoting bone healing, a bone stress stimulator was designed. A two-degree-of-freedom damped spring system forced vibration model was simplified. Five healthy male volunteers (about 25 years old) were recruited to identify the main parameters of the vibration in promoting bone healing system (the identification of the total stiffness of the rubber spring K1, the plantar muscle stiffness K2, the plantar muscle damping r1, and the kirschner wire bending stiffness K’). The simulated callus amplitude was obtained and the experiments of vibration to promote bone healing were performed.
RESULTS AND CONCLUSION: According to the theoretical analysis, and experimental research combined with the stable working range of the prototype, the system could generate axial fretting at tibial fragment and the bone fracture interface produced a certain mechanical stimulation under the conditions of excitation frequency of 26-40 Hz and excitation force of 100-350 N. Due to the omission of the stress shielding effect of the external fixator on the amplitude of the callus, the simulation results were slightly higher than the test results. The amplitude of the callus after disassembled was greater than that of the complete fixation. These results show that the stress-stimulator can make the tibial fragment to produce fretting which is beneficial to bone healing. In the clinic, it is recommended to use external stent with adjustable axial stiffness, constant external stiffness, which can effectively overcome the stress shielding.

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松组织工程

Key words: Vibration, Fracture Healing, Stress, Mechanical, Kinetics, Tissue Engineering

中图分类号: