[2] Asamura S,Mochizuki Y,Yamamoto M,et al.Bone regeneration using a bone morphogenetic protein-2 saturated slow-release gelatin hydrogel sheet,evaluation in a canine orbital floor fracture model.Ann Plast Surg.2010; 64(4):496-502.
[3] Pourebrahim N,Hashemibeni B,Shahnaseri S,et al. A comparison of tissue-engineered bone from adipose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs.Int J Oral Maxillofac Surg. 2013;42(5): 562-568.
[4] Van Hout WM, Mink van der Molen AB,Breugem CC,et al.Reconstruction of the alveolar cleft: can growth factor-aided tissue engineering replace autologous bone grafting A literature review and systematic review of results obtained with bone morphogenetic protein-2.Clin Oral Investig.2011; 15(3):297-303.
[5] Mourino V,Boccaccini AR.Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds.J R Soc Interface.2010;7(43):209-227.
[6] Wang Z,Ho PC.A nanocapsular combinatorial sequential drug delivery system for antiangiogenesis and anticancer activities.Biomaterials.2010;31(27):7115-7123.
[7] Kim S,Kang Y,Krueger CA,et al.Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation.Acta Biomaterialia. 2012;8(5):1768-1777.
[8] Wang L,Huang Y,Pan K,et al.Osteogenic responses to different concentrations/ratios of BMP-2 and bFGF in bone formation.Ann Biomed Eng.2010;38(1):77-87.
[9] Nie H,Dong Z,Arifin DY,et al.Core/shell microspheres via coaxial electtohydrodynamic atomization for sequential and parallel release of drugs. J Biomed Mater Res A.2010;95(3): 709-716.
[10] 左奕,李玉宝.纳米骨修复生物材料研究进展[J].东南大学学报:医学版, 2011,30(1):82-91.
[11] López-Noriega A,Arcos D,Vallet-Regí M. Functionalizing mesoporous bioglasses for long-term anti-osteoporotic drug delivery.Chem Eur J.2010;16(35):10879-10886.
[12] Wu CT,Zhang YF,Ke XB,et al.Bioactive mesoporous-glass microspheres with controllable protein delivery properties by biomimetic surface modification. J Biomed Mater Res A.2010; 95(2):476-485.
[13] Dai C,Guo H,Lu J,et al.Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based μCT.Biomaterials. 2011;32(33):8506-8517.
[14] Bi L,Cheng W,Fan H,et al.Reconstruction of goat tibial defects using an injectable tricalcium phosphate /chitosan in combination with autologous platelet-rich plasma. Biomaterials. 2010;31(12):3201-3211.
[15] Qu D,Li J,Li Y,et al.Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects.J Biomed Mater Res A. 2011; 96(3):543-551.
[16] Zou D,Zhang Z,He J,et al.Repairing critical-sized calvarial defects with BMSCs modified by a constitutively active form of hypoxia-inducible factor-1α and a phosphate cement scaffold. Biomaterials.2011;32(36):9707-9718.
[17] 廖世波,赖琛,张志雄,等.骨修复复合材料及其相关问题的研究进展[J].中国生物医学工程学报,2012,31(5):345-346.
[18] Shin JH,Kim KH,Kim SH,et al.Ex vivo bone morphogenetic protein-2 gene delivery using gingival fibroblasts promotes bone regeneration in rats.J Clin Periodontol. 2010;37(3): 305-311.
[19] Keeney M,van den Beucken JJ,van der Kraan PM,et al.The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165). Biomaterials. 2010;31(10): 2893-2902.
[20] Zhang K,Qian Y,Wang H,et al.Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix.J Biomater Sci Polym Ed. 2011;22(8):1069-1082.
[21] Zhu M,Shi JL,He QJ,et al. An emulsi?cation–solvent evaporation route to mesoporous bioactive glass microspheres for bisphosphonate drug delivery.J Mater Sci.2012;47(5):2256-2263.
[22] Nie H,Fu Y,Wang CH.Paclitaxel and suramin-loaded core/shell microspheres in the treatment of brain tumors.Biomaterials.2010;31(33):8732-8740.
[23] Pountos I,Georgouli T,Henshaw K,et al.The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone.J Orthop Trauma.2010;24(9):552-556.
[24] Li X,Sun H,Lin N,et al.Regeneration of uterine horns in rats by collagen scaffolds loaded with collagen-binding human basic fibroblast growth factor. Biomaterials.2011;32(32):8172-8181.
[25] Yilgor P,Hasirci N,Hasirci V.Sequential BMP-2/BMP-7 delivery from polyester nanocapsules.J Biomed Mater Res A.2010; 93(2):528-536.
[26] Bongio M,Beucken, Leeuwenbixrgh,et al.Development of bonesubstitute materialsrfrom'biocompatible'to'instructive'.J Mater Chem.2010;20(40):8747-8759.
[27] Chen FM,Zhang M,Wu ZF.Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010;31(24): 6279-6308.
[28] Carragee EJ,Hurwitz EL,Weiner BK.A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons leamed.Spine J.2011;11(6):471-491.
[29] Martino MM,Briquez PS,Guc E,et al.Growth factors engineered for super-affinity to the extracelluar matrix enhance tissue healing.Science.2014;343(6173):885-888.
[30] McCall JD,Luoma JE,Anseth KS. Covalently tethered transforming growth factor beta in PEG hydrogels promotes chondrogenic differentiation of encapsulated human mesenchymal stem cells.Drug Deliv Transl Res.2012; 2(5): 305-312.
[31] Sheykhhasan M,Qomi RT,Kalhor N,et al.Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cells.Indian J Orthop. 2015;49(5):561-568.
[32] Mabry KM,Lawrence RL,Anseth KS.Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials.2015;49:47-56.
[33] Sridhar BV,Brock JL,Silver JS,et al.Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition.Adv Healthc Mater. 2015;4(5):702-713.
[34] Mhanna R,Öztürk E,Vallmajo-Martin Q,et al.GFOGER- modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A. 2014;20(7-8):1165-1174.
[35] McKinnon DD, Brown TE, Kyburz KA, et al.Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks.Biomacromolecules. 2014;15(7):2808-2816.
[36] Sridhar BV,Doyle NR,Randolph MA,et al.Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production.J Biomed Mater Res A.2014;102(12):4464-4472.
[37] Wang H,Leinwand LA, Anseth KS.Cardiac valve cells and their microenvironment--insights from in vitro studies.Nat Rev Cardiol. 2014;11(12):715-727.
[38] Lam J,Lu S,Kasper FK,et al.Strategies for controlled delivery of biologics for cartilage repair.Adv Drug Deliv Rev. 2015;84: 123-134.