[1] 张文波,刘云奇,唐白云,等.Telocyte细胞参与体外培养成体心脏干细胞巢的构建[J].中华实验外科杂志,2015, 32(8):1831-1832.
[2] 刘云奇,杨嵩,张希,等.心脏干细胞生长微环境及其体外生物学特性[J].中华胸心血管外科杂志,2012,28(6):368-372.
[3] Lemieux C, Cloutier I, Tanguay JF, et al. Estrogen-induced gene expression in bone marrow c-kit+ stem cells and stromal cells: identification of specific biological processes involved in the functional organization of the stem cell niche. Stem Cells Dev. 2008;17(6):1153-1163.
[4] Zhang S, Ge J, Zhao L, et al. Host vascular niche contributes to myocardial repair induced by intracoronary transplantation of bone marrow CD34+ progenitor cells in infarcted swine heart. Stem Cells. 2007;25(5):1195-1203.
[5] 余细勇.小生境在干细胞向心肌细胞分化过程中的调控作用[C].广东省药理学会,2011年学术年会论文集,2011.
[6] 杨军,褚春,谭芳,等.骨髓间充质干细胞心脏移植微环境和经络气血的关系[J].医学信息(中旬刊),2009,22(11): 1024-1027.
[7] Jin H, Sanberg PR, Henning RJ, et al. Human umbilical cord blood mononuclear cell-conditioned media inhibits hypoxic-induced apoptosis in human coronary artery endothelial cells and cardiac myocytes by activation of the survival protein Akt. Cell transplantation. 2013;22(9):1637-1650.
[8] Mirotsou M, Zhang ZY, Deb A, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A. 2007;104(5):1643-1648.
[9] Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med. 2007;4(z1):S21-S26.
[10] 余细勇.Niche在干细胞心肌分化与异常发育中的表观遗传学调节[C].国际心脏研究会(ISHR)中国分会(第十一届)暨中国病理生理学会心血管专业委员会(第十四届)、受体与信号转导专业委员会(第九届)学术会议论文集.2012.
[11] Tsubokawa T, Yagi K, Nakanishi C, et al. Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia. Am J Physiol. 2010;298(5 Pt 2):H1320-H1329.
[12] 王岗,高亚.肠神经嵴干细胞发育与小生境[J].中华小儿外科杂志,2008,29(4):251-253.
[13] 郭新,蔡志明,桂耀庭,等.人胚胎干细胞向生殖细胞分化的研究进展[J].生理科学进展,2006,37(1):17-21.
[14] 董雪涛.脑肿瘤干细胞与小生境[J].国际神经病学神经外科学杂志,2010,37(6):565-569.
[15] 杨琴,谢鹏.成体神经干细胞和微环境[J].中风与神经疾病杂志,2006,23(4):504-506.
[16] 朱艳霞,刘天庆,宋克东,等.心肌样微环境诱导脂肪干细胞分化的研究[J].生物化学与生物物理进展,2009,36(5): 624-632.
[17] 张贵焘,谭玉珍,王海杰,等.微环境对心肌干细胞动员和分化的影响[J].国际生物医学工程杂志,2007,30(4): 205-208.
[18] 沈玉萍,尹立雪.超声靶向破坏微泡改变心肌梗死后干细胞微环境的研究进展[J].中华超声影像学杂志,2012, 21(7):629-631.
[19] 褚勤.心肌微环境下NKX2-5基因诱导MSCs向心肌分化[D].石家庄:河北医科大学,2013.
[20] 牛丽丽,祝善俊,张树林,等.同种异体骨髓间充质干细胞在大鼠心脏的迁移及分化特点[J].中华心血管病杂志,2004, 32(z1):186-189.
[21] 李晓红,余细勇,林秋雄,等.微环境中人骨髓间充质干细胞向心肌细胞表型分化的实验研究[J].中华心血管病杂志, 2008,36(7):651-654.
[22] Li TS, Cheng K, Lee ST, et al. Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells. 2010;28(11):2088-2098.
[23] Saravanakumar M, Devaraj H. Distribution and homing pattern of c-kit+ Sca-1+ CXCR4+ resident cardiac stem cells in neonatal, postnatal, and adult mouse heart. Cardiovasc Pathol. 2013,22(4):257-263.
[24] Messina E, De Angelis L, Frati G, et aL. Isolation and expansion of adult cardiac stem cells from human and murine heart. Cite Res. 2004;95:911-921.
[25] 徐红新,田毅浩,江洪,等.曲美他嗪改善移植微环境对心肌梗死大鼠左心功能的影响[J].中华超声影像学杂志, 2009, 18(11):973-976.
[26] 屈佳,高东来.体外模拟心肌环境诱导骨髓间充质干细胞向心肌细胞的分化[J].中国组织工程研究与临床康复, 2008,12(8):1489-1492.
[27] Liu JL, Jiang L, Lin QX, et al. MicroRNA 16 enhances differentiation of human bone marrow mesenchymal stem cells in a cardiac niche toward myogenic phenotypes in vitro. Life Sci. 2012;90(25/26): 1020-1026.
[28] Henning RJ, Dennis S, Sawmiller, D, et al. Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia. Transl Res. 2012;159(6):497-506.
[29] Kim, DH, Kshitiz S, Rachel R, et al. Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration. Integr Biol (Camb). 2012;4(9):1019-1033.
[30] Sreejit P, Verma RS. Natural ECM as Biomaterial for Scaffold Based Cardiac Regeneration Using Adult Bone Marrow Derived Stem Cells. Stem Cell Rev Rep. 2013;9(2):158-171.
[31] 李晓红,符永恒,刘再毅,等.微环境预处理的骨髓间充质干细胞治疗大鼠心肌梗死[J].中华心血管病杂志,2009, 37(8):680-684.
[32] Jonsson M, Henriksson HB, Hagman M, et al. Novel 3D culture system with similarities to the human heart for studies of the cardiac stem cell niche.Regen Med. 2010;5(5):725-736.
[33] 凌智瑜.超声辐照微泡诱导心肌微环境改变联合骨髓间充质干细胞移植促进梗死心肌血管新生研究[D].重庆:重庆医科大学,2010.
[34] 施霞,孟娟,彭武健等.受体衰老微环境对骨髓干细胞治疗急性心肌梗死效果的影响[J].广东医学,2015,(19): 2952-2955.
[35] 钟志英,苏海.心脏干细胞移植可行性与安全性的争议[J].国外医学(心血管疾病分册),2005,32(4):201-204.
[36] 林楚伟,周胜华,刘启明,等.骨髓间充质干细胞诱导心脏成纤维细胞向肌纤维母细胞转化:不同时期心肌梗死区域的最佳微环境[J].中国组织工程研究与临床康复,2010, 14(36):6667-6671.
[37] Gemma M, Balmer, Paul R Riley. Harnessing the potential of adult cardiac stem cells: lessons from haematopoiesis, the embryo and the niche. J Cardiovasc Transl Res. 2012;5(5):631-640.
[38] 王佳南,张晓刚,郑丽娜,等.仿生电刺激在离体心肌诱导骨髓间充质干细胞向心肌样细胞分化中的作用[J].解放军医学杂志,2009,34(5):537-540.
[39] 陈军.体外模拟心脏微环境诱导骨髓间充质干细胞向心肌样细胞分化的实验研究[D].武汉:华中科技大学,2006.
[40] Marks ED, Kumar A. Thymosin β4: Roles in Development, Repair, and Engineering of the Cardiovascular System. Vitam Horm. 2016;102: 227-249.
[41] Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther. 2016; 7(1):82.
[42] Kang J, Hur J, Kang JA, et al. Priming mobilized peripheral blood mononuclear cells with the "activated platelet supernatant" enhances the efficacy of cell therapy for myocardial infarction of rats. Cardiovasc Ther. 2016;34(4):245-253.
[43] Nishida K. Future Innovative Medicine for Corneal Diseases. Nippon Ganka Gakkai Zasshi. 2016; 120(3):226-245.
[44] Hogrebe NJ, Gooch KJ. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel. J Biomed Mater Res A. 2016;104(9):2356-2368.
[45] Chen J, Kang JG, Keyvanfar K, et al. Long-term adaptation to hypoxia preserves hematopoietic stem cell function. Exp Hematol. 2016;44(9):866-873.
[46] O'Hagan-Wong K, Nadeau S, et al. Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells' homeostasis. Oncotarget. 2016;7(12):13285-13296.
[47] Kostin S. Cardiac telocytes in normal and diseased hearts. Semin Cell Dev Biol. 2016;55:22-30.
[48] Carson D, Hnilova M, Yang X, et al. Nanotopography- Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells. ACS Appl Mater Interfaces. 2016;8(34):21923-21932.
[49] Happe CL, Engler AJ. Mechanical Forces Reshape Differentiation Cues That Guide Cardiomyogenesis. Circ Res. 2016;118(2):296-310.
[50] den Hartogh SC, Wolstencroft K, Mummery CL, et al. A comprehensive gene expression analysis at sequential stages of in vitro cardiac differentiation from isolated MESP1-expressing-mesoderm progenitors. Sci Rep. 2016;6:19386.
[51] Marsano A, Conficconi C, Lemme M, et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 2016;16(3):599-610.
[52] Schimke MM, Marozin S, Lepperdinger G. Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy. Front Physiol. 2015;6:362.
[53] Palazzolo G, Quattrocelli M, Toelen J, et al. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells Int. 2016;2016:4969430.
[54] Ensan S, Li A, Besla R, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17(2):159-168.
[55] Popescu LM, Fertig ET, Gherghiceanu M. Reaching out: junctions between cardiac telocytes and cardiac stem cells in culture. J Cell Mol Med. 2016;20(2): 370-380. |