[1] Dernbach E, Urbich C, Brandes RP, et al. Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood. 2004;104(12):3591-3597.
[2] Drowley L, Okada M, Beckman S, et al. Cellular antioxidant levels influence muscle stem cell therapy. Mol Ther. 2010;18(10):1865-1873.
[3] Inoue T, Hiratsuka M, Osaki M, et al. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle. 2007;6(9):1011-1018.
[4] Xie G, He RR, Feng X, et al. The hypoglycemic effects of Camellia assamica var. kucha extract. Biosci Biotechnol Biochem. 2010;74(2):405-407.
[5] Liszt G, Ford E, Kurtev M, et al. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem. 2005;280(22):21313-21320.
[6] Lai CC, Lin PM, Lin SF, et al. Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol. 2013;34(3):1847-1854.
[7] Olmos Y, Brosens JJ, Lam EW. Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer. Drug Resist Updat. 2011;14(1):35-44.
[8] Gorospe M, de Cabo R. AsSIRTing the DNA damage response. Trends Cell Biol. 2008;18(2):77-83.
[9] Kennedy BK, Smith ED, Kaeberlein M. The enigmatic role of Sir2 in aging. Cell. 2005;123(4):548-550.
[10] Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24(8):464-471.
[11] Rippe C, Lesniewski LA, Donato AJ, et al. Short-term Caloric Restriction Improves Glucose Tolerance in Older Mice Independent of Changes in SIRT-1. The FASEB Journal. 2009; 23(1):990.
[12] Hida Y, Kubo Y, Murao K, et al. Strong expression of a longevity-related protein, SIRT1, in Bowen's disease. Arch Dermatol Res. 2007;299(2):103-106.
[13] Moura R, Fadini GP, Tjwa M. Induced pluripotent stem (iPS) cells and endothelial cell generation: SIRT-ainly a good idea. Atherosclerosis. 2010; 212(1):36-39.
[14] Lim CS. Human SIRT1: a potential biomarker for tumorigenesis. Cell Biol Int. 2007;31(6):636-637.
[15] Schilling T, Ebert R, Raaijmakers N, et al. Effects of phytoestrogens and other plant-derived compounds on mesenchymal stem cells, bone maintenance and regeneration. J Steroid Biochem Mol Biol. 2014;139: 252-261.
[16] Hong W, Tatsuo S, Shou-Dong W, et al. Resveratrol Upregulates Cardiac SDF-1 in Mice with Acute Myocardial Infarction through the Deacetylation of Cardiac p53. PLoS One. 2015;10(6):e0128978.
[17] Matsui K, Ezoe S, Oritani K, et al. NAD-dependent histone deacetylase, SIRT1, plays essential roles in the maintenance of hematopoietic stem cells. Biochem Biophys Res Commun. 2012;418(4): 811-817.
[18] Rimmelé P, Bigarella CL, Liang R, et al. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Reports. 2014;3(1):44-59.
[19] 丛姗,白立恒,李岩,等.人羊膜间充质干细胞移植对CCl4诱导的小鼠损伤肝HGF、SIRT-1、α-SMA及P27kip1表达的影响[J].中国生物化学与分子生物学报, 2015,31(3): 292-300.
[20] Chen H, Liu X, Zhu W, et al. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin. Front Aging Neurosci. 2014;6:103.
[21] Liu M, Yin Y, Ye X, et al. Resveratrol protects against age-associated infertility in mice.Hum Reprod. 2013; 28(3):707-717.
[22] Buhrmann C, Busch F, Shayan P, et al. Sirtuin-1 (SIRT1) is required for promoting chondrogenic differentiation of mesenchymal stem cells. J Biol Chem. 2014;289(32):22048-22062.
[23] Movahedi Naini S, Sheridan AM, Force T, et al. Group IVA Cytosolic Phospholipase A2 Regulates the G2-to-M Transition by Modulating the Activity of Tumor Suppressor SIRT2. Mol Cell Biol. 2015;35(21): 3768-3784.
[24] Tseng PC, Hou SM, Chen RJ, et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res. 2011;26(10): 2552-2563.
[25] Zhao D, Mo Y, Li MT, et al. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest. 2014;124(12): 5453-5465.
[26] Wang F, Chan CH, Chen K, et al. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene. 2012;31(12):1546-1557.
[27] Narayan N, Lee IH, Borenstein R, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature. 2012;492(7428): 199-204.
[28] Sayd S, Thirant C, El-Habr EA, et al. Sirtuin-2 activity is required for glioma stem cell proliferation arrest but not necrosis induced by resveratrol. Stem Cell Rev. 2014;10(1):103-113.
[29] Zhao Y, Guan YF, Zhou XM, et al. Regenerative Neurogenesis After Ischemic Stroke Promoted by Nicotinamide Phosphoribosyltransferase-Nicotinamide Adenine Dinucleotide Cascade. Stroke. 2015;46(7): 1966-1974.
[30] Pérez Estrada C, Covacu R, Sankavaram SR, et al. Oxidative stress increases neurogenesis and oligodendrogenesis in adult neural progenitor cells. Stem Cells Dev. 2014;23(19):2311-2327.
[31] Duan WJ, Liu FL, He RR, et al. Autophagy is involved in the effects of resveratrol on prevention of splenocyte apoptosis caused by oxidative stress in restrained mice. Mol Nutr Food Res. 2013;57(7): 1145-1157.
[32] 王国恩,翟羽佳,何蓉蓉,等. SirT3调节氧化应激作用[J]. 中国药理学通报,2012,28(10): 1333-1336.
[33] 徐军,王国恩,章时杰,等.1,3,7,9-四甲基尿酸激活SirT3/ AMPK/ACC信号通路减少高脂饮食小鼠肝脏脂肪化[J].中国药理学通报,2014,30(6):791-795.
[34] Wang XQ, Shao Y, Ma CY, et al. Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress. J Cell Mol Med. 2014;18(11):2298-2310.
[35] Li Y, Yu C, Shen G, et al. Sirt3-MnSOD axis represses nicotine-induced mitochondrial oxidative stress and mtDNA damage in osteoblasts. Acta Biochim Biophys Sin (Shanghai). 2015;47(4):306-312.
[36] McKenna MC, Rae CD. A new role for α-ketoglutarate dehydrogenase complex: regulating metabolism through post-translational modification of other enzymes. J Neurochem. 2015;134(1):3-6.
[37] Calenic B, Yaegaki K, Ishkitiev N, et al. p53-Pathway activity and apoptosis in hydrogen sulfide-exposed stem cells separated from human gingival epithelium. J Periodontal Res. 2013;48(3):322-330.
[38] Newman JC, He W, Verdin E. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J Biol Chem. 2012;287(51):42436-42443.
[39] Carobbio S, Vetterli L, Frigerio F, et al. Tissue Specificity of Glutamate Dehydrogenase as Illustrated in Pancreatic Beta-Cells and the Central Nervous System. Karger Publishers. 2012;21:125-136.
[40] Kofman AE, Huszar JM, Payne CJ. Transcriptional analysis of histone deacetylase family members reveal similarities between differentiating and aging spermatogonial stem cells. Stem Cell Rev. 2013;9(1): 59-64.
[41] Gertz M, Steegborn C. Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia. Biochim Biophys Acta. 2010;1804(8):1658-1665.
[42] Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 2008; 382(3):790-801.
[43] Tennen RI, Chua KF. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem Sci. 2011;36(1):39-46.
[44] Van Meter M, Mao Z, Gorbunova V, et al. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair. Aging (Albany NY). 2011;3(9):829-835.
[45] Etchegaray JP, Chavez L, Huang Y, et al. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine. Nat Cell Biol. 2015;17(5): 545-557.
[46] Kaidi A, Weinert BT, Choudhary C, et al. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 2010;329(5997):1348-1353.
[47] Kim W, Kim JE. SIRT7 an emerging sirtuin: deciphering newer roles. J Physiol Pharmacol. 2013; 64(5):531-534.
[48] Liu JP, Chen R. Stressed SIRT7: facing a crossroad of senescence and immortality. Clin Exp Pharmacol Physiol. 2015;42(6):567-569.
[49] Sharma A, Diecke S, Zhang WY, et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem. 2013; 288(25):18439-18447.
[50] Sun H, Wu Y, Fu D, et al. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-κB signaling pathway. Stem Cells. 2014;32(7):1943-1955.
[51] Tsai YC, Greco TM, Boonmee A, et al. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics. 2012;11(5):60-76.
[52] Zhou Y, Tang YL, Wang YP, et al. Effect of SIRT6/NF-κB signal axis in delaying hematopoietic stem/progenitor cell senescence with ginsenoside Rg1.Zhongguo Zhong Yao Za Zhi. 2015;40(3): 511-515.
[53] Croker AK, Allan AL. Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med. 2008;12(2):374-390.
[54] Joyce N, Annett G, Wirthlin L, et al. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5(6):933-946.
[55] Leibel S, Post M. Endogenous and Exogenous Stem/Progenitor Cells in the Lung and Their Role in the Pathogenesis and Treatment of Pediatric Lung Disease. Front Pediatr. 2016;4:36. |