中国组织工程研究 ›› 2015, Vol. 19 ›› Issue (52): 8467-8472.doi: 10.3969/j.issn.2095-4344.2015.52.019

• 复合支架材料 composite scaffold materials • 上一篇    下一篇

聚氨酯/低聚倍半硅氧烷复合纤维的制备

肖荣冬1,2,翁国星1   

  1. 1福建医科大学省立临床医学院,福建省福州市  3500012福建省心血管病研究所心血管外科,福建省福州市  350001
  • 收稿日期:2015-10-24 出版日期:2015-12-17 发布日期:2015-12-17
  • 作者简介:肖荣冬,男,1973年生,福建龙岩市人,汉族,博士,副主任医师,主要从事生物支架方面的研究。
  • 基金资助:

    福建省社会发展项目(2013Y0027)

Preparation of polyurethane/polyhedral oligomeric silsesquioxane nanocomposite fibers

Xiao Rong-dong1, 2, Weng Guo-xing1   

  1. 1Provincial Clinical College of Fujian Medical University, Fuzhou 350001, Fujian Province, China; 2Department of Cardiovascular Surgery, Fujian Institute of Cardiovascular Disease, Fuzhou 350001, Fujian Province, China
  • Received:2015-10-24 Online:2015-12-17 Published:2015-12-17
  • About author:Xiao Rong-dong, M.D., Associate chief physician, Provincial Clinical College of Fujian Medical University, Fuzhou 350001, Fujian Province, China; Department of Cardiovascular Surgery, Fujian Institute of Cardiovascular Disease, Fuzhou 350001, Fujian Province, China
  • Supported by:

    the Social Development Program of Fujian Province of China, No. 2013Y0027

摘要:

背景:聚氨酯具有良好的生物相容性,然而其固有的惰性导致其与细胞之间的相互作用较弱,因此需要对其改性。
目的:制备形貌可控的聚氨酯/低聚倍半硅氧烷纳米复合纤维。
方法:将多面体低聚倍半硅氧烷分散到一定浓度的聚氨酯溶液中,通过静电纺丝制备聚氨酯/低聚倍半硅氧烷纳米复合纤维,同时分析聚氨酯质量、低聚倍半硅氧烷质量、纺丝电压、纺丝推进速度对复合纤维形态的影响,筛选最佳制备条件;检测低聚倍半硅氧烷在聚氨酯中的稳定性;采用扫描电子显微镜、红外光谱、X射线光电子能谱对纤维形貌和组成进行分析。
结果与结论:通过实验得出,低聚倍半硅氧烷能稳定存在于聚氨酯中,当复合纤维中聚氨酯质量分数为20%、聚氨酯与低聚倍半硅氧烷质量比为10∶1、纺丝电压为15 kV、纺丝推进速度为0.5 mL/h时,聚氨酯/低聚倍半硅氧烷纳米复合纤维最均匀。与纯聚氨酯相比,聚氨酯/低聚倍半硅氧烷纳米复合材料的O/C比明显增大。 

关键词: 生物材料, 纳米材料, 复合支架生物材料, 仿生支架材料, 聚氨酯复合纤维, 多面体低聚倍半硅氧烷, 静电纺丝

Abstract:

BACKGROUND: Although polyurethane possesses excellent biocompatibility, its inherent inertness leads to its weak interactions with cells. So, its modification is necessary.
OBJECTIVE: To prepare the polyurethane/polyhedral oligomeric silsesquioxane nanocomposite fibers with controllable morphology.
METHODS: The polyhedral oligomeric silsesquioxane was dispersed in a certain concentration of polyurethane solution to prepare the polyurethane/polyhedral oligomeric silsesquioxane nanocomposite fibers using electrospinning method. Meanwhile, the effects of mass of polyurethane and oligomeric silsesquioxane, spinning voltage and spinning advance velocity on composite fiber morphology were analyzed. The optimum preparing conditions were filtrated. The stability of oligomeric silsesquioxane in polyurethane was determined. The morphology and composition of fibers were analyzed by scanning electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy.
RESULTS AND CONCLUSION: Oligomeric silsesquioxane stably existed in polyurethane. Polyurethane/polyhedral oligomeric silsesquioxane nanocomposite fibers were the most uniform when the mass fraction of polyurethane in composite fibers accounted for 20%, the mass ratio of polyurethane and oligomeric silsesquioxane was 10: 1, spinning voltage was 15 kV and spinning advance velocity was 0.5 mL/h. Compared with the pure polyurethane, the O/C ratio of polyurethane/polyhedral oligomeric silsesquioxane nanocomposites increased significantly. 
  中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

中图分类号: