中国组织工程研究

• 组织工程骨及软骨材料 tissue-engineered bone and cartilage materials • 上一篇    下一篇

软基底介导细胞骨架蛋白与力学特性的改变

侯 添,安美文,王 立   

  1. 太原理工大学力学学院,山西省太原市 030024
  • 收稿日期:2018-03-15 出版日期:2018-08-08 发布日期:2018-08-08
  • 通讯作者: 安美文,教授,太原理工大学力学学院,山西省太原市 030024
  • 作者简介:侯添,女,1992年生,四川省绵阳市人,汉族,2017年太原理工大学力学学院毕业,硕士,主要从事细胞力学研究。
  • 基金资助:

    国家自然科学基金面上项目(11372208)

Changes in cytoskeleton proteins and mechanical properties of the cells on soft substrates

Hou Tian, An Mei-wen, Wang Li   

  1. School of Mechanics, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • Received:2018-03-15 Online:2018-08-08 Published:2018-08-08
  • Contact: An Mei-wen, Professor, School of Mechanics, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • About author:Hou Tian, Master, School of Mechanics, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • Supported by:

    the National Natural Science Foundation of China, No. 11372208

摘要:

文章快速阅读:

 

文题释义:
细胞外基质:是一个复杂的细胞外环境,细胞通过与细胞外基质的相互作用进行物质能量的交换,当细胞与细胞外环境之间的物质交换代谢发生不平衡时,大量大分子物质就会在细胞外进行堆积,使得细胞外环境的力学特性发生改变。
肌球蛋白:是肌原纤维粗丝的组成单位,存在于横纹肌和平滑肌中,在肌肉运动中起重要作用,其分子形状如豆芽状,由2条重链和多条轻链构成。2条重链的大部分相互螺旋形地缠绕为杆状,构成豆芽状的杆;重链的剩余部分与轻链一起,构成豆芽的瓣。
 
背景:前期研究发现在不同硬度基底上生长的细胞,细胞调控受基底硬度的影响,但抑制肌球蛋白的活性会阻碍基底硬度对细胞的调控作用,然而关于基底硬度对于肌球蛋白的影响及在这个过程中对于肌球蛋白的量化描述较少。
目的:量化肌球蛋白Ⅱ分布及运动速率、肌动蛋白纤维分布与基底硬度的关系。
方法:采用聚丙烯酰胺凝胶制备硬度分别为1,10,150 kPa的基底,将稳定表达转染荧光肌球蛋白Ⅱ的宫颈癌Hela细胞分别接种于不同硬度的基底上12 h,检测不同硬度基底上生长的宫颈癌细胞荧光肌球蛋白Ⅱ沿细胞长轴的荧光分布,利用荧光漂白恢复技术测定荧光肌球蛋白Ⅱ的运动速率,荧光染色观察肌动蛋白纤维的分布,利用微管吸吮技术测定单个宫颈癌细胞在铺展状态下的细胞膜弹性模量。

结果与结论:①硬度为150 kPa基底上细胞的边缘荧光肌球蛋白Ⅱ强度显著高于其他部分;在1 kPa和10 kPa基底上生长的细胞,荧光肌球蛋白Ⅱ在边缘的分布呈现出一定回落现象;②硬度为150 kPa基底上细胞末端荧光肌球蛋白Ⅱ的恢复速率最大,显著快于1 kPa和10 kPa基底上细胞的恢复速率;③3种硬度基底上生长的细胞肌动蛋白纤维整体荧光强度近似;④硬度为150 kPa基底上Hela细胞细胞膜的弹性模量显著高于     1 kPa和10 kPa基底上的细胞;⑤结果表明,基底硬度会明显改变肌球蛋白、肌动蛋白等重要细胞骨架蛋白区域性作用的效果,影响癌细胞在不同微环境下的细胞状态。

ORCID: 0000-0001-9563-6463(侯添)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 细胞骨架, 肌球蛋白, 肌动蛋白纤维, 细胞外基质, 聚丙烯酰胺凝胶, 基底硬度, 弹性模量, 人宫颈癌细胞, 生物材料

Abstract:

BACKGROUND: Preliminary studies have shown that substrate hardness is directly involved in cell regulation, but this effect can be hindered via suppression of myosin expression. Therefore, the effect of substrate hardness on myosin expression needs to be further quantified.

OBJECTIVE: To quantify the effect of substrate hardness on the distribution and movement rate of myosin II as well as on the distribution of actin fibers.
METHODS: Polyacrylamide gels were used to prepare substrates with hardness of 1, 10, 150 kPa. Cervical cancer were Hela cells stably transfected with fluorescent myosin II, and these transfected cells were incubated onto the substrates of different hardness. The fluorescence distribution of fluorescent myosin II along the long axis of Hela cells on the substrates of different hardness was measured. The movement rate of fluorescent myosin II was determined by fluorescence photobleaching recovery technique. F-actin distribution was observed using fluorescent staining. The elastic modulus of single cervical cancer cells spreading on different substrates was determined using micropipette aspiration technique.

RESULTS AND CONCLUSION: For the cells growing on the 150 kPa substrate, the highest intensity of fluorescent myosin II was located on the cell edge. For the cells on the substrates of 1 and 10 kPa, there was a reduced distribution of fluorescent myosin II on the cell edge. For the cells on the 150 kPa substrate, the recovery rate of fluorescent myosin II was significantly faster than that on the substrates of 1 and    10 kPa. Actin fibers in the cells growing on the substrates of 1, 10 and 150 kPa shared similarity in the overall fluorescence intensity. The elastic modulus of Hela cells on the substrate of 150 kPa was significantly higher than that on 1 kPa and 10 kPa substrates. Experimental results show that substrate hardness can significantly alter the regional effects of cytoskeletal proteins such as myosin and actin, and affect the cell status of cancer cells in different microenvironments.

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

Key words: Myosins, Actins, Elastic Modulus, Tissue Engineering

中图分类号: