中国组织工程研究 ›› 2018, Vol. 22 ›› Issue (32): 5117-5122.doi: 10.3969/j.issn.2095-4344.0387

• 软骨组织构建 cartilage tissue construction • 上一篇    下一篇

压缩载荷下微缺损关节软骨流体场变化的数值分析

李晓明1,2,门玉涛1,2,张春秋1,2   

  1. 天津理工大学,1天津市先进机电系统设计与智能控制重点实验室,2机电工程国家级实验教学示范中心,天津市  300384
  • 收稿日期:2018-01-11 出版日期:2018-11-18 发布日期:2018-11-18
  • 通讯作者: 门玉涛,博士,讲师,天津理工大学,天津市先进机电系统设计与智能控制重点实验室,机电工程国家级实验教学示范中心,天津市 300384
  • 作者简介:李晓明,男,1992年生,河南省焦作市人,汉族,天津理工大学在读硕士,主要从事机械设计及理论方面的研究。
  • 基金资助:

    国家自然科学基金(11402171,11672208,11432016,81741141)

Numerical analysis of fluid field changes in articular cartilage with micro-defects under compressive load 

Li Xiao-ming1, 2, Men Yu-tao1, 2, Zhang Chun-qiu1, 2   

  1. 1Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, 2National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
  • Received:2018-01-11 Online:2018-11-18 Published:2018-11-18
  • Contact: Men Yu-tao, PhD, Lecturer, Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
  • About author:Li Xiao-ming, Master candidate, Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
  • Supported by:

    the National Natural Science Foundation of China, No. 11402171, 11672208, 11432016 and 81741141

摘要:

文章快速阅读:

文题释义:
间质流动:在软骨组织内部充斥着大量的间质液,它们在软骨力学和生理学上发挥着不可替代的作用。在力学上,当关节软骨承受载荷时,组织内部的间质液由于压力梯度的驱动作用会在软骨组织内部形成一种微观流动,称为间质流动。在生理学上,间质流动主要起着传递营养物质的作用。
间质液压:关节软骨在受到载荷作用时,有发生变形的趋势,而这时软骨组织内部极小的渗透率却限制了间质流动,从而很好地阻碍了关节软骨发生较大的变形。这一过程中会在软骨组织内部形成很高的静水压力,在生物力学中被称为间质液压,它能够在软骨受载初期分担90%以上的载荷。
摘要
背景
:长久以来关节软骨的力学研究以固相的变形为重心,间质流动的研究相对较少,而间质流动是维持软骨正常力学行为和生理功能的核心机制。
目的:研究压缩载荷作用下微缺损关节软骨流体场的变化规律,为软骨损伤力学机制的完善提供理论依据。
方法:建立微缺损的纤维增强多孔黏弹性的二维关节软骨数值模型,对压缩载荷作用下间质流动过程进行模拟和参数研究,获得微缺损关节软骨的流体场分布变化规律。
结果与结论:压缩载荷下,缺损部位两侧底角处间质液压的增大,会增大此处的承载能力,阻止损伤向深处扩展,而缺损两侧间质液压的减小以及该处间质流动的加快,会促进缺损向两侧扩展;此外由于缺损部位两侧底角处的应力集中处与四周存在间质液压差,会使得缺损部位的间质液以应力集中处为中心向四周流动。此研究结果表明损伤软骨具有自我调节能力,能够延缓损伤加剧。

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松组织工程
ORCID: 0000-0003-0753-4411(李晓明)

关键词: 压缩载荷, 微缺损关节软骨, 间质流动, 间质液压, 流体场, 数值模拟, 组织构建

Abstract:

BACKGROUND: Mechanical study of articular cartilage has been focused on the deformation of solid phase, and there are few studies on interstitial flow. While interstitial flow is the core mechanism for maintaining the
normal mechanical and physiological functions of cartilage.
OBJECTIVE: To study the changes of cartilage fluid field of articular cartilage with micro-defects under compressive load, and to provide theoretical basis for better understanding of mechanical mechanism of cartilage injury.
METHODS: The two-dimensional numerical model of fiber-reinforced and porous-viscoelasticity articular cartilage was established to simulate and parameterize the process of interstitial flow under compressive load. The variation of fluid field distribution of articular cartilage with micro-defects was obtained.
RESULTS AND CONCLUSION: The increase in interstitial fluid pressure at the bilateral bottom corners of defect sites under compressive load increased the bearing capacity and prevented further damage. The reduction in the interstitial fluid pressure on the bilateral defects and the acceleration in the interstitial flow would promote the damage deteriorating to the surrounding area. In addition, due to stress concentration at the bilateral bottom corners of the defect and interstitial fluid pressure difference, it would make interstitial fluid flowed from the center stress of stress concentration into surrounding area. Our results show that injured cartilage has a self-regulating ability to delay damage.

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松组织工程

Key words: Cartilage, Articular, Hydrodynamics, Computer Simulation, Tissue Engineering 

中图分类号: