[1] HO-SHUI-LING A, BOLANDER J, RUSTOM LE, et al. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180: 143-162.
[2] ANNAMALAI RT, HONG X, SCHOTT NG, et al. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials. 2019;208:32-44.
[3] TANG D, TARE RS, YANG LY, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363-382.
[4] 赵恩哲,吴斗,刘强.骨缺损的治疗现状及研究进展[J].中华实验外科杂志,2022, 39(11):2053-2057.
[5] CHANG S, WANG S, LIU Z, et al. Advances of Stimulus-Responsive Hydrogels for Bone Defects Repair in Tissue Engineering. Gels. 2022;8(6):389.
[6] 熊伟,袁灵梅,钱国文,等.“补肾壮骨”中药应用于骨组织工程支架修复节段性骨缺损 [J]. 中国组织工程研究,2023, 27(21):3438-3444.
[7] TANG H, HOSEIN A, MATTIOLI-BELMONTE M. Traditional Chinese Medicine and orthopedic biomaterials: Host of opportunities from herbal extracts. Mater Sci Eng C Mater Biol Appl. 2021;120:111760.
[8] NALLUSAMY J, DAS RK. Hydrogels and Their Role in Bone Tissue Engineering: An Overview. J Pharm Bioallied Sci. 2021; 13(Suppl 2):S908-S912.
[9] LIU X, SUN S, WANG N, et al. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol. 2022; 10:998988.
[10] TOKITA M. Phase Transition of Gels-A Review of Toyoich Tanaka’s Research. Gels. 2022; 8(9):550.
[11] STRANDMAN S, ZHU XX. Self-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions. Gels. 2016; 2(2):16.
[12] PUSHPARAJ K, BALASUBRAMANIAN B, PAPPUSWAMY M, et al. Out of Box Thinking to Tangible Science: A Benchmark History of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering. Life (Basel). 2023; 13(4):954.
[13] DU J, ZHOU T, PENG W. Functional polysaccharide-based hydrogel in bone regeneration: From fundamentals to advanced applications. Carbohydr Polym. 2025;352:123138.
[14] PATIL PS, FATHOLLAHIPOUR S, INMANN A, et al. Fluorinated Methacrylamide Chitosan Hydrogel Dressings Improve Regenerated Wound Tissue Quality in Diabetic Wound Healing. Adv Wound Care (New Rochelle). 2019;8(8):374-385.
[15] WANG Y, TANG S, JIANG L, et al. A review of lignin application in hydrogel dressing. Int J Biol Macromol. 2024;281(Pt 3):135786.
[16] SHAN Z, JIANG B, WANG P, et al. Sustainable lignin-based composite hydrogels for controlled drug release and self-healing in antimicrobial wound dressing. Int J Biol Macromol. 2025;285:138327.
[17] CAO JF, ZHAO YN, JIN SC, et al. Flexible Lignin-based hydrogels with Self-healing and adhesive ability driven by noncovalent interactions. Chem Eng J. 2022;429:132252.
[18] LIU Z, MA X, LIU J, et al. Advances in the application of natural/synthetic hybrid hydrogels in tissue engineering and delivery systems: A comprehensive review. Int J Pharm. 2025;672:125323.
[19] 李艾康,周梓萌,吴凉彬,等.水凝胶支架用于软骨修复的研究进展[J].中华骨与关节外科杂志,2025,18(2):177-183.
[20] LIUT , LIU GT, ZHANG JH, et al. l-Arginine based polyester amide/hyaluronic acid hybrid hydrogel with dual anti-inflammation and antioxidant functions for accelerated wound healing. Chin Chem Lett. 2022;33(4):1880-1884.
[21] WEI X, XIE H, LIU C, et al. Nature Herbal Medicine- Tissue Engineering Strategies for Regulate Cell Homeostasis in Bone Regeneration. Adv Funct Mater. 2025; 35(13):2417810.
[22] LI J, LI L, WU T, et al. An Injectable Thermosensitive Hydrogel Containing Resveratrol and Dexamethasone-Loaded Carbonated Hydroxyapatite Microspheres for the Regeneration of Osteoporotic Bone Defects. Small Methods. 2024;8(1):e2300843.
[23] DING Q, LIU W, ZHANG S, et al. Hydrogel loaded with thiolated chitosan modified taxifolin liposome promotes osteoblast proliferation and regulates Wnt signaling pathway to repair rat skull defects. Carbohydr Polym. 2024;336:122115.
[24] CHATTERJEE S, HUI PC, SIU WS, et al. Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int J Biol Macromol. 2021;168: 163-174.
[25] WEI C, XING S, LI Y, et al. Gelatin/carboxymethyl chitosan/aloe juice hydrogels with skin-like endurance and quick recovery: Preparation, characterization, and properties. Int J Biol Macromol. 2024; 261(Pt 1):129720.
[26] 徐达达.共价交联大黄多糖、淫羊藿多糖明胶水凝胶及其性能评价[D].兰州: 兰州理工大学,2019.
[27] ZHANG Q, ZHANG M, WANG T, et al. Preparation of aloe polysaccharide/honey/PVA composite hydrogel: Antibacterial activity and promoting wound healing. Int J Biol Macromol. 2022;211:249-258.
[28] 毕玉杰,马笃军,彭力平,等.中医药联合医用水凝胶治疗疾病的策略及意义[J].中国组织工程研究,2024,28(3):419-425.
[29] 董心雨,董馨月,王婉婷,等.中药有效成分结合支架材料促进骨组织再生[J].中国组织工程研究,2024,28(20):3240-3245.
[30] KIM JM, LIN C, STAVRE Z, et al. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells. 2020;9(9):2073.
[31] LEENA RS, VAIRAMANI M, SELVAMURUGAN N. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids Surf B Biointerfaces. 2017;158:308-318.
[32] YANG J, ZHANG L, WANG Y, et al. Dihydromyricetin-loaded oxidized polysaccharide/L-arginine chitosan adhesive hydrogel promotes bone regeneration by regulating PI3K/AKT signaling pathway and MAPK signaling pathway. Carbohydr Polym. 2024;346:122614.
[33] LIU H, JIAO Y, FOROUZANFAR T, et al. High-strength double-network silk fibroin based hydrogel loaded with Icariin and BMSCs to inhibit osteoclasts and promote osteogenic differentiation to enhance bone repair. Biomater Adv. 2024;160:213856.
[34] WEI B, WANG W, LIU X, et al. Gelatin methacrylate hydrogel scaffold carrying resveratrol-loaded solid lipid nanoparticles for enhancement of osteogenic differentiation of BMSCs and effective bone regeneration. Regen Biomater. 2021;8(5): rbab044.
[35] YU Q, MENG Z, LIU Y, et al. Photocuring Hyaluronic Acid/Silk Fibroin Hydrogel Containing Curcumin Loaded CHITOSAN Nanoparticles for the Treatment of MG-63 Cells and ME3T3-E1 Cells. Polymers (Basel). 2021;13(14):2302.
[36] AMIRYAGHOUBI N, FATHI M, SAFARY A,
et al. In situ forming alginate/gelatin hydrogel scaffold through Schiff base reaction embedded with curcumin-loaded chitosan microspheres for bone tissue regeneration. Int J Biol Macromol. 2024;256(Pt 2):128335.
[37] YU T, DING Q, WANG N, et al. Cranial repair-promoting effect of oxidised sodium alginate/amino gelatine injectable hydrogel loaded with deer antler blood peptides. Int J Biol Macromol. 2025;305(Pt 1):141116.
[38] DONG M, YANG X, LU J, et al. Injectable rBMSCs-laden hydrogel microspheres loaded with naringin for osteomyelitis treatment. Biofabrication. 2023;15(4). doi: 10.1088/1758-5090/aceaaf.
[39] CHEN Y, QIU Z, HU X, et al. Biofunctional supramolecular injectable hydrogel with spongy-like metal-organic coordination for effective repair of critical-sized calvarial defects. Asian J Pharm Sci. 2025; 20(1):100988.
[40] 解强,常俊杰,高俊,等.阿仑膦酸修饰的水凝胶负载柚皮素骨靶向系统构建及其增强成骨分化作用 [J].中国骨质疏松杂志,2023,29(4):531-537.
[41] 杨世超,宋慕格,李幸,等.淫羊藿苷修复骨缺损及其作用机制研究[J].中国骨质疏松杂志,2024,30(5):720-724,744.
[42] KODAMA J, WILKINSON KJ, IWAMOTO M,
et al. The role of hypertrophic chondrocytes in regulation of the cartilage-to-bone transition in fracture healing. Bone Rep. 2022;17:101616.
[43] AN X, ZHOU F, LI G, et al. Cyaonoside A-loaded composite hydrogel microspheres to treat osteoarthritis by relieving chondrocyte inflammation. J Mater Chem B. 2024;12(17):4148-4161.
[44] LIAO S, ZHOU K, KANG Y, et al. Enhanced cartilage repair using gelatin methacryloyl hydrogels combined with icariin and magnesium-doped bioactive glass. Artif Cells Nanomed Biotechnol. 2025;53(1): 181-193.
[45] ZHU Y, YE L, CAI X, et al. Icariin-Loaded Hydrogel Regulates Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation and Promotes Cartilage Repair in Osteoarthritis. Front Bioeng Biotechnol. 2022;10:755260.
[46] LI S, YUAN Q, YANG M, et al. Enhanced cartilage regeneration by icariin and mesenchymal stem cell-derived extracellular vesicles combined in alginate-hyaluronic acid hydrogel. Nanomedicine. 2024;55:102723.
[47] AN X, ZHOU Q, SHENG S, et al. Enhanced Chondrogenic Potential and Osteoarthritis Treatment Using Cyaonoside A-Induced MSC Delivered via a Hyaluronic Acid-Based Hydrogel System. Aging Dis. 2025. doi: 10.14336/AD.2024.10016.
[48] JIANG W, XIANG X, SONG M, et al. An all-silk-derived bilayer hydrogel for osteochondral tissue engineering. Mater Today Bio. 2022; 17:100485.
[49] WANG Z, LI K, SUN H, et al. Icariin promotes stable chondrogenic differentiation of bone marrow mesenchymal stem cells in self‑assembling peptide nanofiber hydrogel scaffolds. Mol Med Rep. 2018;17(6): 8237-8243.
[50] VAN DER KRAAN PM. The Interaction between Joint Inflammation and Cartilage Repair. Tissue Eng Regen Med. 2019;16(4):327-334.
[51] YANG Y, HU Q, SHAO Q, et al. A Baicalin-Based Functional Polymer in Dynamic Reversible Networks Alleviates Osteoarthritis by Cellular Interactions. Adv Sci (Weinh). 2025;12(10):e2410951.
[52] LIU J, LI D, SUN X, et al. Icariine Restores LPS-Induced Bone Loss by Downregulating miR-34c Level. Inflammation. 2016;39(5):1764-1770.
[53] 周晓洁,姚辛敏,周妍妍.淫羊藿的药理作用研究进展[J].中医药学报,2022, 50(11):112-125.
[54] LI X, SUN Z, SHANG X, et al. Sequential delivery of IL-10 and icariin using nanoparticle/hydrogel hybrid system for prompting bone defect repair. Mater Today Bio. 2024;29:101374.
[55] TANG M, WANG G, LI J, et al. Flavonoid extract from propolis alleviates periodontitis by boosting periodontium regeneration and inflammation resolution via regulating TLR4/MyD88/NF-κB and RANK/NF-κB pathway. J Ethnopharmacol. 2024;319(Pt 3):117324.
[56] ZHENG Y, SUN RT, HAN MC, et al. Injectable Gypsogenin-Based Composite Hydrogel Enhances Osteoporotic Bone Regeneration by Alleviating Oxidative Injury via Promoting AMPKα Phosphorylation. Adv Funct Mater. 2025. doi: 10.1002/adfm.202424326.
[57] SUN Q, YIN W, RU X, et al. Dual role of injectable curcumin-loaded microgels for efficient repair of osteoarthritic cartilage injury. Front Bioeng Biotechnol. 2022;10:994816.
[58] HUANG R, HU C, XU S, et al. 3D-Printed Bifunctional Scaffold for Treatment of Critical Bone Defects Based on Osteoimmune Microenvironment Regulation and Osteogenetic Effects. ACS Appl Mater Interfaces. 2024;16(46):63345-63357.
[59] SHAO B, FU Y, LI B, et al. Icariin-loaded chitosan/β-glycerophosphate thermosensitive hydrogel enhanced infection control and bone regeneration in canine with infectious bone defects. J Biomater Appl. 2025;39(7):696-713.
[60] XU S, ZHAO S, JIAN Y, et al. Icariin-loaded hydrogel with concurrent chondrogenesis and anti-inflammatory properties for promoting cartilage regeneration in a large animal model. Front Cell Dev Biol. 2022;10:1011260.
[61] ASGARI N, BAGHERI F, ESLAMINEJAD MB, et al. Dual functional construct containing kartogenin releasing microtissues and curcumin for cartilage regeneration. Stem Cell Res Ther. 2020;11(1):289.
[62] STEGEN S, VAN GASTEL N, CARMELIET G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone. 2015;70:19-27.
[63] FAN D, LIU H, ZHANG Z, et al. Resveratrol and Angiogenin-2 Combined With PEGDA/TCS Hydrogel for the Targeted Therapy of Hypoxic Bone Defects via Activation of the Autophagy Pathway. Front Pharmacol. 2021;12:618724.
[64] WANG W, CHEN H, XIAO J, et al. Microenvironment-responsive injectable hydrogel for neuro-vascularized bone regeneration. Mater Today Bio. 2024;29: 101369.
[65] YANG J, HAN Y, ZHANG L, et al. Taxifolin-loaded cellulose/l-arginine-chitosan hydrogel promoting bone defect repair through osteogenesis and angiogenesis. Int J Biol Macromol. 2024;283(Pt 3):137843.
[66] DAYA R, XU C, NGUYEN NT, et al. Angiogenic Hyaluronic Acid Hydrogels with Curcumin-Coated Magnetic Nanoparticles for Tissue Repair. ACS Appl Mater Interfaces. 2022;14(9):11051-11067.
|