中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (20): 5282-5294.doi: 10.12307/2026.328
• 生物材料综述 biomaterial review • 上一篇 下一篇
王 亮1,张 鑫1,何 维2,王 剑1
接受日期:2025-07-28
出版日期:2026-07-18
发布日期:2025-12-02
通讯作者:
王剑,博士,教授,口腔疾病防治全国重点实验室,国家口腔疾病临床医学研究中心,四川大学华西口腔医院修复科,四川省成都市 610041
作者简介:王亮,女,1998年生,重庆市人,汉族,四川大学华西口腔医学院在读硕士,主要从事骨缺损修复材料的应用研究。
基金资助:Wang Liang1, Zhang Xin1, He Wei2, Wang Jian1
Accepted:2025-07-28
Online:2026-07-18
Published:2025-12-02
Contact:
Wang Jian, MD, Professor, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
About author:Wang Liang, Master candidate, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
Supported by:摘要:
文题释义:
MXene:是一类新型的二维过渡金属碳/氮化物,通式为Mn+1XnTx,其中M代表早期过渡金属(如Sc、Ti、Nb、Mo等),X代表碳和/或氮,Tx表示表面官能团(如-OH、-O、-F等)。
骨缺损修复:指通过生物材料、细胞或生长因子等手段,恢复因创伤、感染、肿瘤或先天性疾病导致的骨组织结构和功能缺失的过程。骨缺损修复的核心目标是促进骨再生,恢复骨骼的力学完整性和生物学功能。
背景:近年来,MXene及其衍生物因良好的生物相容性、生物可降解性、高光热转换能力以及内在的抗菌和成骨能力等特性,在骨缺损修复领域展现出较大的应用前景。
目的:阐述MXene的生物医学特性,总结MXene基材料在修复骨缺损方面的研究应用进展。
方法:在PubMed、Web of Science、中国知网和万方数据库中检索2005-2025年发表的文献,英文检索词为“MXene,Bone defect,Bone repair,Bone Regeneration,Bone tissue engineering”,中文检索词为“MXene,骨缺损,骨修复,骨再生,骨组织工程”,经逐层筛选后最终纳入97篇文献进行综述。
结果与结论:MXene具有良好的生物相容性、抗菌性、抗氧化和免疫调节性、光热性能和导电性能,将MXene引入骨组织工程支架的制备中可以赋予支架抗感染功能、免疫调节功能、增强的机械性能和促成骨能力。MXene作为引导骨再生膜材料有较大的应用潜力。MXene材料因具备优异的生物活性和抗菌性能是构建高性能植入物涂层的理想选择。MXene基3D打印墨水的成功制备为构建复杂结构的骨支架奠定了基础,MXene的优异性能赋予3D打印支架多重功能,使其在骨缺损修复中具备更广泛的应用前景。
https://orcid.org/0009-0002-1471-5632 (王亮)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
王 亮, 张 鑫, 何 维, 王 剑. MXene基材料修复骨缺损的临床应用与前景[J]. 中国组织工程研究, 2026, 30(20): 5282-5294.
Wang Liang, Zhang Xin, He Wei, Wang Jian. Clinical application and prospects of MXene-based materials for the repair of bone defects[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(20): 5282-5294.













| [1] HABIBOVIC P. Strategic Directions in Osteoinduction and Biomimetics. Tissue Eng Part A. 2017;23(23-24):1295-1296. [2] BEZ M, SHEYN D, TAWACKOLI W, et al. In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs. Sci Transl Med. 2017;9(390):eaal3128. [3] BAROLI B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci. 2009;98(4):1317-1375. [4] BHUMIRATANA S, BERNHARD JC, ALFI DM, et al. Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med. 2016;8(343):343ra83-343ra83. [5] YU F, ZHAO X, ZHANG S, et al. Regulation of T cell glycosylation by MXene/β-TCP nanocomposite for enhanced mandibular bone regeneration. Adv Healthcare Mater. 2025;14(6):e2404015. [6] ALAGARSAMY KN, SALETH LR, SEKARAN S, et al. MXenes as emerging materials to repair electroactive tissues and organs. Bioact Mater. 2025;48:583-608. [7] NAGUIB M, BARSOUM MW, GOGOTSI Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv Mater. 2021;33(39):2103393. [8] PARK H, KIM S, KIM S, et al. Bioactive inorganic compound MXene and its application in tissue engineering and regenerative medicine. J Ind Eng Chem. 2023;117:38-53. [9] LI T, QIANG W, LEI B. Bioactive surface-functionalized MXenes for biomedicine. Nanoscale. 2025;17(9):4854-4891. [10] NIE R, SUN Y, LV H, et al. 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models. Nanoscale. 2022;14(22):8112-8129. [11] WANG H, HSU YC, WANG C, et al. Conductive and enhanced mechanical strength of Mo2Ti2C3 MXene-based hydrogel promotes neurogenesis and bone regeneration in bone defect repair. ACS Appl Mater Interfaces. 2024;16(14):17208-17218. [12] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv Mater. 2011; 23(37):4248-4253. [13] LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc. 2017;139(45):16235-16247. [14] ZHANG J, FU Y, MO A. Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration. Int J Nanomed. 2019; 14:10091-10103. [15] RAFIEERAD A, YAN W, SEQUIERA GL, et al. Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv Healthcare Mater. 2019; 8(16):e1900569. [16] PAN S, YIN J, YU L, et al. 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction. Adv Sci (Weinh). 2020;7(2):1901511. [17] YANG C, LUO Y, LIN H, et al. Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration. ACS Nano. 2021;15(1): 1086-1099. [18] HU ZC, LU JQ, ZHANG TW, et al. Piezoresistive MXene/silk fibroin nanocomposite hydrogel for accelerating bone regeneration by Re-establishing electrical microenvironment. Bioact Mater. 2023;22:1-17. [19] HUANG B, LI S, DAI S, et al. Ti3C2Tx MXene-decorated 3D-printed ceramic scaffolds for enhancing osteogenesis by spatiotemporally orchestrating inflammatory and bone repair responses. Adv Sci (Weinh). 2024; 11(34):e2400229. [20] WAN S, CHEN Y, HUANG C, et al. Scalable ultrastrong MXene films with superior osteogenesis. Nature. 2024;634(8036):1103-1110. [21] ZHAO J, WANG T, ZHU Y, et al. Enhanced osteogenic and ROS-scavenging MXene nanosheets incorporated gelatin-based nanocomposite hydrogels for critical-sized calvarial defect repair. Int J Biol Macromol. 2024;269(Pt 1):131914. [22] SZUPLEWSKA A, WOJCIECHOWSKA A, POŹNIAK S, et al. Multilayered stable 2D nano-sheets of Ti2NTx MXene: synthesis, characterization, and anticancer activity. J Nanobiotechnology. 2019;17:114 [23] SZUPLEWSKA A, KULPIŃSKA D, DYBKO A, et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Mater Sci Eng C. 2019;98:874-886. [24] CUI D, KONG N, DING L, et al. Ultrathin 2D Titanium Carbide MXene (Ti3C2Tx ) Nanoflakes Activate WNT/HIF-1α-Mediated Metabolism Reprogramming for Periodontal Regeneration. Adv Healthc Mater. 2021; 10(22):e2101215. [25] ZHANG D, ZHENG W, LI X, et al. Investigating the effect of Ti3C2 (MXene) nanosheet on human umbilical vein endothelial cells via a combined untargeted and targeted metabolomics approach. Carbon. 2021;178:810-821. [26] HUANG J, SU J, HOU Z, et al. Cytocompatibility of Ti3C2Tx MXene with Red Blood Cells and Human Umbilical Vein Endothelial Cells and the Underlying Mechanisms. Chem Res Toxicol. 2023; 36(3):347-359. [27] NASRALLAH GK, AL-ASMAKH M, RASOOL K, et al. Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model. Environ Sci Nano. 2018;5(4): 1002-1011. [28] SZUPLEWSKA A, KULPIŃSKA D, JAKUBCZAK M, et al. The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward future biotechnological applications. Adv Drug Delivery Rev. 2022; 182:114099. [29] REN X, HUO M, WANG M, et al. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging. ACS Nano. 2019;13(6):6438-6454. [30] LI G, ZHONG X, WANG X, et al. Titanium carbide nanosheets with defect structure for photothermal-enhanced sonodynamic therapy. Bioact Mater. 2022;8:409-419. [31] SEIDI F, ARABI SHAMSABADI A, DADASHI FIROUZJAEI M, et al. MXenes antibacterial properties and applications: a review and perspective. Small. 2023;19(14):2206716. [32] RASOOL K, HELAL M, ALI A, et al. Antibacterial activity of Ti3C2Tx MXene. ACS Nano. 2016;10(3):3674-3684. [33] ARABI SHAMSABADI A, SHARIFIAN GH. M, ANASORI B, et al. Antimicrobial Mode-of-Action of Colloidal Ti3C2Tx MXene Nanosheets. ACS Sustainable Chem Eng. 2018;6(12):16586-16596. [34] RASOOL K, MAHMOUD KA, JOHNSON DJ, et al. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep0 2017;7(1):1598. [35] GUO H, CHU X, GUO Y, et al. A water transfer printing method for contact lenses surface 2D MXene modification to resist bacterial infection and inflammation. Sci Adv. 2024;10(15):eadl3262. [36] RASHEED PA, PANDEY RP, GOMEZ T, et al. Large interlayer spacing Nb4C3Tx (MXene) promotes the ultrasensitive electrochemical detection of Pb2+ on glassy carbon electrodes. RSC Adv. 2020;10(41):24697-24704. [37] HUANG Y, LI J, YU Z, et al. Elaborated bio-heterojunction with robust sterilization effect for infected tissue regeneration via activating competent cell-like antibacterial tactic[J]. Adv Mater. 2024;36(48):e2414111. [38] CAI Z, MA Y, YUN M, et al. Multifunctional MXene/holey graphene films for electromagnetic interference shielding, joule heating, and photothermal conversion. Compos Part B Eng. 2023;251:110477. [39] QIN M, ZHANG X, DING H, et al. Engineered probiotic bio-heterojunction with robust antibiofilm modality via “eating” extracellular polymeric substances for wound regeneration. Adv Mater. 2024;36(35):2402530. [40] SHIFRINA ZB, MATVEEVA VG, BRONSTEIN LM. Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chem Rev. 2020; 120(2):1350-1396. [41] WANG W, FENG H, LIU J, et al. A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability. Chem Eng J. 2020;386:124116. [42] ALDER KD, LEE I, MUNGER AM, et al. Intracellular Staphylococcus aureus in bone and joint infections: A mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone. 2020; 141:115568. [43] MASTERS EA, RICCIARDI BF, BENTLEY KLM, et al. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol. 2022;20(7):385-400. [44] QU X, GUO Y, XIE C, et al. Photoactivated MXene nanosheets for integrated bone–soft tissue therapy: effect and potential mechanism. ACS Nano. 2023;17(8): 7229-7240. [45] YU Y, YOU Z, LI X, et al. Injectable Nanocomposite Hydrogels with Strong Antibacterial, Osteoinductive, and ROS-Scavenging Capabilities for Periodontitis Treatment. ACS Appl Mater Interfaces. 2024;16(12):14421-14433. [46] XIA S, LIU D, JIANG K, et al. Photothermal driven BMSCs osteogenesis and M2 macrophage polarization on polydopamine-coated Ti3C2 nanosheets/poly(vinylidene fluoride trifluoroethylene) nanocomposite coatings. Mater Today Bio. 2024;27:101156. [47] WU M, LIU H, ZHU Y, et al. Mild photothermal-stimulation based on injectable and photocurable hydrogels orchestrates immunomodulation and osteogenesis for high-performance bone regeneration. Small. 2023;19(28):e2300111. [48] DONG C, TAN G, ZHANG G, et al. The function of immunomodulation and biomaterials for scaffold in the process of bone defect repair: a review. Front Bioeng Biotechnol. 2023;11:1133995. [49] LI S, ZHANG L, LIU C, et al. Spontaneous immunomodulation and regulation of angiogenesis and osteogenesis by Sr/Cu-borosilicate glass (BSG) bone cement to repair critical bone defects. Bioact Mater.2023;23:101-117. [50] VELARD F, BRAUX J, AMEDEE J, et al. Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater. 2013;9(2): 4956-4963. [51] MALARD O, BOULER JM, GUICHEUX J, et al. Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J Biomed Mater Res. 1999;46(1):103-111. [52] ZHAO Z, ZHANG J, YANG Z, et al. Biodegradation of HA and β-TCP Ceramics Regulated by T-Cells. Pharmaceutics. 2022; 14(9):1962. [53] LI Q, WANG W, FENG H, et al. NIR-triggered photocatalytic and photothermal performance for sterilization based on copper sulfide nanoparticles anchored on Ti3C2Tx MXene. J Colloid Interface Sci. 2021;604:810-822. [54] SHIN H, JEONG W, HAN TH. Maximizing light-to-heat conversion of Ti3C2Tx MXene metamaterials with wrinkled surfaces for artificial actuators. Nat Commun. 2024; 15(1):10507. [55] ZHANG G, LU Y, SONG J, et al. A multifunctional nano-hydroxyapatite/MXene scaffold for the photothermal/dynamic treatment of bone tumours and simultaneous tissue regeneration. J Colloid Interface Sci. 2023;652(Pt B):1673-1684. [56] ZHAO Y, KANG H, XIA Y, et al. 3D printed photothermal scaffold sandwiching bacteria inside and outside improves the infected microenvironment and repairs bone defects. Adv Healthcare Mater. 2024; 13(6):e2302879. [57] ZHANG YZ, WANG Y, JIANG Q, et al. MXene Printing and Patterned Coating for Device Applications. Adv Mater. 2020; 32(21):e1908486. [58] LI Y, ZHANG X. Electrically Conductive, Optically Responsive, and Highly Orientated Ti3C2T MXene Aerogel Fibers. Adv Funct Mater. 2022;32(4):2107767. [59] MATHIS TS, MALESKI K, GOAD A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano. 2021; 15(4):6420-6429. [60] 郭妙才,黑艳伟,李斌太,等.石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能[J].复合材料学报, 2022,39(9):4354-4365. [61] JUNG S, BALOCH U, ACHARY L, et al. Ligand chemistry for surface functionalization in MXenes :A review. Ecomat. 2023;5(10).doi:10.1002/eom2.12395. [62] KO TY, KIM D, KIM SJ, et al. Universal ligands for dispersion of two-dimensional MXene in organic solvents. ACS Nano. 2023;17(2): 1112-1119. [63] JING H, YEO H, LYU B, et al. Modulation of the Electronic Properties of MXene (Ti3C2Tx) via Surface-Covalent Functionalization with Diazonium. ACS Nano. 2021;15(1):1388-1396. [64] FU Y, HUANG S, FENG Z, et al. MXene-functionalized ferroelectric nanocomposite membranes with modulating surface potential enhance bone regeneration. ACS Biomater Sci Eng. 2023;9(2):900-917. [65] BOULARAOUI S, SHANTI A, LANOTTE M, et al. Nanocomposite Conductive Bioinks Based on Low-Concentration GelMA and MXene Nanosheets/Gold Nanoparticles Providing Enhanced Printability of Functional Skeletal Muscle Tissues. ACS Biomater Sci Eng. 2021;7(12):5810-5822. [66] NAN LP, LIN Z, WANG F, et al. Ti3C2Tx MXene-Coated Electrospun PCL Conduits for Enhancing Neurite Regeneration and Angiogenesis. Front Bioeng Biotechnol. 2022;10:850650. [67] CUI ZK, KIM S, BALJON JJ, et al. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat Commun. 2019;10(1):3523. [68] TAN Y, SUN H, LAN Y, et al. Study on 3D printed MXene-berberine-integrated scaffold for photo-activated antibacterial activity and bone regeneration. J Mater Chem B. 2024;12(8): 2158-2179. [69] 徐志民.3D打印MXene/PCL原位骨组织工程支架及其成骨分子机制的研究[D].长春:吉林大学,2022. [70] DIEDKOVA K, POGREBNJAK AD, KYRYLENKO S, et al. Polycaprolactone–MXene Nanofibrous Scaffolds for Tissue Engineering. ACS Appl Mater Interfaces. 2023;15(11):14033-14047. [71] JIANG JH, LEE EJ. Influence of MXene Particles with a Stacked-Lamellar Structure on Osteogenic Differentiation of Human Mesenchymal Stem Cells. Materials (Basel). 2021;14(16):4453. [72] SONG D, HE G, SHI Y, et al. Functional interaction between wnt and bmp signaling in periosteal bone growth. Sci Rep. 2021; 11(1):10782. [73] MAJIDINIA M, SADEGHPOUR A, YOUSEFI B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018;233(4):2937-2948. [74] XU D, LI Y, YE Y, et al. Super-assembled niobium-MXene integrated frameworks for accelerated bone repair and osseointegration. Nano Today. 2024;59:102471. [75] YIN J, PAN S, GUO X, et al. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano Micro Lett. 2021;13(1):30. [76] ZHANG X, CHENG G, XING X, et al. Near-Infrared Light-Triggered Porous AuPd Alloy Nanoparticles To Produce Mild Localized Heat To Accelerate Bone Regeneration. J Phys Chem Lett. 2019;10(15):4185-4191. [77] ZHANG J, TANG S, DING N, et al. Surface-modified Ti3C2 MXene nanosheets for mesenchymal stem cell osteogenic differentiation via photothermal conversion. Nanoscale Adv. 2023;5(11):2921-2932. [78] CHEN Y, LIU W, WAN S, et al. Superior synergistic osteogenesis of MXene‐based hydrogel through supersensitive drug release at mild heat. Adv Funct Mater. 2024;34(2):2309191. [79] HU T, CAI P, XIA C. MXene reinforced microporous bacterial cellulose/sodium alginate dual crosslinked cryogel for bone tissue engineering. Biomed Mater. 2024;19(5):55022. [80] LI J, FAN Z, GUAN Z, et al. Injectable MXene/Ag-HA composite hydrogel for enhanced alveolar bone healing and mechanistic study. Front Bioeng Biotechnol. 2024;12:1485437. [81] ZHU Y, LIU H, WU P, et al. Multifunctional injectable hydrogel system as a mild photothermal-assisted therapeutic platform for programmed regulation of inflammation and osteo-microenvironment for enhanced healing of diabetic bone defects in situ. Theranostics. 2024;14(18):7140-7198. [82] WU M, ZHANG Y, ZHAO Y, et al. Photoactivated hydrogel therapeutic system with MXene-based nanoarchitectonics potentiates endogenous bone repair through reshaping the osteo-vascularization network. Small. 2024;20(51):e2403003. [83] ZHANG D, HUANG L, SUN DW, et al. Bio-interface engineering of MXene nanosheets with immobilized lysozyme for light-enhanced enzymatic inactivation of methicillin-resistant Staphylococcus aureus. Chem Eng J. 2023;452:139078. [84] SU Y, ZHANG X, WEI Y, et al. Nanocatalytic Hydrogel with Rapid Photodisinfection and Robust Adhesion for Fortified Cutaneous Regeneration. ACS Appl Mater Interfaces. 2023;15(5):6354-6370. [85] GONG J, LAI S, ZHANG S, et al. Multi‐Functional Bio‐HJzyme Engineered Polyetheretherketone Implant with Cascade‐Amplification Therapeutic Capabilities Toward Intractable Implant‐Associated Infections. Small. 2024;21(7):e2409437. [86] 杨雨晴,陈志宇.早期短暂M1巨噬细胞在骨组织工程中的作用及应用[J].中国组织工程研究,2024,28(4):594-601. [87] 赵月鑫,陈滨.巨噬细胞极化在骨组织工程免疫研究中的进展[J].中国组织工程研究,2022,26(13):2120-2126. [88] YU X, PAN H, HE Q, et al. MXene-based dual-gated multifunctional nanodrug induced ferroptosis and modulated tumor microenvironment to treat pancreatic cancer. Chem Eng J. 2024;500:157233. [89] ZHOU H, ZHAO Y, ZHA X, et al. A Janus, robust, biodegradable bacterial cellulose/Ti3C2Tx MXene bilayer membranes for guided bone regeneration. Biomater Adv. 2024;161:213892. [90] ZHANG S, HUANG L, BIAN M, et al. Multifunctional bone regeneration membrane with flexibility, electrical stimulation activity and osteoinductive activity. Small (Weinh Bergstr Ger). 2024; 20(47):e2405311. [91] YANG K, LEI S, QIN X, et al. Biodegradable polyvinyl alcohol/nano-hydroxyapatite composite membrane enhanced by MXene nanosheets for guided bone regeneration. J Mech Behav Biomed Mater. 2024;155:106540. [92] YU Y, JIN G, XUE Y, et al. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater. 2017;49:590-603. [93] GEULI O, METOKI N, ELIAZ N, et al. Electrochemically driven hydroxyapatite nanoparticles coating of medical implants. Adv Funct Mater. 2016;26(44):8003-8010. [94] YIN J, HAN Q, ZHANG J, et al. MXene-based hydrogels endow polyetheretherketone with effective osteogenicity and combined treatment of osteosarcoma and bacterial infection. ACS Appl Mater Interfaces. 2020; 12(41):45891-45903. [95] DANANJAYA V, HANSIKA N, MARIMUTHU S, et al. MXenes and its composite structures: synthesis, properties, applications, 3D/4D printing, and artificial intelligence; machine learning integration. Prog Mater Sci. 2025; 152:101433. [96] MI X, SU Z, FU Y, et al. 3D printing of Ti3C2-MXene-incorporated composite scaffolds for accelerated bone regeneration. Biomed Mater. 2022;17(3):35002. [97] ZHAO Y, CHEN H, FU J, et al. Drug-loaded microspheres on NIR-responsive PLA/MXene scaffolds: controlled release and bone tissue regeneration. ACS Appl Bio Mater. 2025;8(1):285-298. |
| [1] | 吴妍廷, 李 宇, 廖金凤. 氧化镁纳米粒调控成骨与血管生成相关基因表达促进骨缺损愈合[J]. 中国组织工程研究, 2026, 30(8): 1885-1895. |
| [2] | 潘之怡, 黄嘉雯, 薛文君, 徐建达. MXene柔性电子传感器的优势及在糖尿病足创面监测中的应用[J]. 中国组织工程研究, 2026, 30(8): 2023-2032. |
| [3] | 刘大为, 崔颖颖, 王方辉, 王子轩, 陈宇涵, 李友瑞, 张荣和. 表没食子儿茶素没食子酸酯介导活性氧双向调控及在纳米材料中的应用[J]. 中国组织工程研究, 2026, 30(8): 2101-2112. |
| [4] | 赖 渝, 陈跃平, 章晓云. 生物活性材料治疗骨感染的研究热点与前沿趋势[J]. 中国组织工程研究, 2026, 30(8): 2132-2144. |
| [5] | 陈伟飞, 梅远东, 巨积辉. 双离子时序释放多功能水凝胶修复感染性骨缺损[J]. 中国组织工程研究, 2026, 30(20): 5188-5200. |
| [6] | 林科建, 柴应红, 邹 杰, 黄蕊欣, 方永超, 黄 警, 杨 沁, 罗 霞, 张 红. 含Cu2+医用镁合金微弧氧化功能涂层的制备及抗肿瘤、促血管形成效应[J]. 中国组织工程研究, 2026, 30(20): 5103-5114. |
| [7] | 周孝辉, 王思怡, 周启云, 何 钊, 贾玉娟, 王元斌, 马建武, 陈 刚, 郑 峰, 褚耿磊. 纳米羟基磷灰石-聚醚碳酸酯脲静电纺丝膜促进骨缺损修复[J]. 中国组织工程研究, 2026, 30(20): 5134-5142. |
| [8] | 徐亚伟, 孟世龙, 张 徐, 汪成杰, 袁一峰, 史晓林, 王 娇, 刘 康. 中药有效成分结合水凝胶修复骨缺损:成功与挑战[J]. 中国组织工程研究, 2026, 30(20): 5295-5303. |
| [9] | 唐 浩, 钟 倩, 吴洪瀚, 吴恒鹏, 吴兴凯, 瓦庆德. 3D打印生物可吸收聚酯支架用于骨再生治疗[J]. 中国组织工程研究, 2026, 30(20): 5304-5311. |
| [10] | 何贞贞, 黄汉记, 王嘉伟, 谢庆条, 江献芳. 生物支架在炎症驱动颞下颌关节骨及软骨破坏及结构性损伤修复中的作用[J]. 中国组织工程研究, 2026, 30(20): 5312-5320. |
| [11] | 王 卓, 孙盼盼, 程焕芝, 曹婷婷. 壳聚糖在口腔软硬组织修复与再生中的应用[J]. 中国组织工程研究, 2026, 30(2): 459-468. |
| [12] | 王 域, 范民杰, 郑朋飞. 多重刺激响应性水凝胶在骨损伤修复中的应用:特殊响应能力及多样性功能[J]. 中国组织工程研究, 2026, 30(2): 469-479. |
| [13] | 许文和, 李小兵, 刘 芳. 功能化仿生矿化胶原修饰的骨科植入物[J]. 中国组织工程研究, 2026, 30(2): 516-527. |
| [14] | 闫启全, 杨立斌, 李梦君, 倪亚卓, 陈科颖, 许 博, 李耀扬, 马士卿, 李 睿, 李建文. 负载抗菌肽KR-12-a5猪小肠黏膜下层复合纳米羟基磷灰石生物支架的制备及抗菌性能[J]. 中国组织工程研究, 2026, 30(2): 384-394. |
| [15] | 袁 茜, 张 昊, 庞 杰. 负载柚皮苷壳聚糖/β-磷酸三钙支架的表征及生物学性能[J]. 中国组织工程研究, 2026, 30(2): 424-432. |
1.1.7 检索策略 采用主题词和自由词结合的方式进行检索,以PubMed数据库检索策略为例,见图2。
1.2 入组标准
纳入标准:①文献内容与综述主题高度相关;②文献具有较高的科学质量,包括研究设计规范、数据充分严谨等;③优先纳入近5年内发表于权威期刊、论点论据严谨可靠的文献。
排除标准:①与研究主题无关或相关性较差的文献;②重复或类似研究;③质量较低(如论点不明确、论据不充分)的文献。
1.3 文献质量评估及数据提取 根据检索策略共获得352篇文献,其中中文87篇、英文265篇,通过阅读标题和摘要并结合纳入和排除标准,最终筛选出97篇符合要求的文献进行分析和整理。文献筛选流程见图3。
MXene材料独特的物理化学性质使其在骨缺损修复中具备多重优势。首先,MXene纳米片具有较高的比表面积和丰富的表面官能团,可以有效吸附生物分子,促进细胞黏附和生长。其次,MXene材料具有良好的生物相容性和生物降解性,能够被人体安全代谢,减少长期植入引起的炎症反应和毒性风险[9]。更重要的是,MXene材料独特的光热效应和电学特性,可以通过光热治疗杀灭细菌,抑制感染,同时可以通过电刺激促进成骨细胞的增殖和分化,加速骨组织再生。
基于MXene材料的独特优势,研究者们将其应用于骨组织工程支架、GBR膜、植入物/涂层以及3D打印等多个方面,并在骨缺损修复领域取得了显著进展。该文旨在对近年来MXene基材料在骨缺损修复领域的应用进展进行全面文献综述,重点关注MXene在骨组织工程支架、引导骨再生膜、植入物/涂层和3D打印骨支架中的应用,并对MXene基材料在该领域所面临的挑战和未来的发展方向进行深入的分析和展望,期望能够为MXene在骨修复领域的进一步研究和临床应用提供参考。
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||