[1] WANG Y, SHAO T, WANG J, et al. An update on potential biomarkers for diagnosing diabetic foot ulcer at early stage. Biomed Pharmacother. 2021;133:110991.
[2] BUS SA, VAN NETTEN JJ, HINCHLIFFE RJ, et al. Standards for the development and methodology of the 2019 International Working Group on the Diabetic Foot guidelines. Diabetes Metab Res Rev. 2020; 36(S1):e3267.
[3] MCDERMOTT K, FANG M, BOULTON AJM,
et al. Etiology, Epidemiology, and Disparities in the Burden of Diabetic Foot Ulcers. Diabetes Care. 2023;46(1):209-221.
[4] NUBE VL, ALISON JA, TWIGG SM. Frequency of sharp wound debridement in the management of diabetes-related foot ulcers: exploring current practice. J Foot Ankle Res. 2021;14(1):52.
[5] HUANG Q, WANG JT, GU HC, et al. Comparison of Vacuum Sealing Drainage and Traditional Therapy for Treatment of Diabetic Foot Ulcers: A Meta-Analysis. J FooT Ankle Surg. 2019;58(5):954-958.
[6] JIANG Y, WANG X, XIA L, et al. A cohort study of diabetic patients and diabetic foot ulceration patients in China. Wound Repair Regen. 2015;23(2):222-230.
[7] ILO A, ROMSI P, MAKELA J. Infrared Thermography and Vascular Disorders in Diabetic Feet. J Diabetes Sci Technol. 2020;14(1):28-36.
[8] 邵盛奇,樊凯,李杜娟,等.可穿戴无创葡萄糖传感器在糖尿病管理中的应用进展[J].中国生物医学工程学报,2022, 41(6):732-743.
[9] QURESHI A, NIAZI JH. Biosensors for detecting viral and bacterial infections using host biomarkers: a review. Analyst. 2020;145(24):7825-7848.
[10] XU L, DING LQ, SUN YH, et al. Stretchable, flexible and breathable polylactic acid/polyvinyl pyrrolidone bandage based on Kirigami for wounds monitoring and treatment. Int J Biol Macromol. 2023;237: 124204.
[11] SHARIFUZZAMAN M, CHHETRY A, ABU ZAHED M, et al. Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management. Biosens Bioelectron. 2020;169:112637.
[12] MYNDRUL V, COY E, BABAYEVSKA N, et al.
MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor. Biosens Bioelectron. 2022;207:12.
[13] ZHAO SF, HU FX, SHI ZZ, et al. 2-D/2-D heterostructured biomimetic enzyme by interfacial assembling Mn3(PO4)2 and MXene as a flexible platform for realtime sensitive sensing cell superoxide. Nano Res. 2021;14(3):879-886.
[14] NANDI I, KUMARI R, KACHHAWAHA K, et al. Electrochemical Sensor Based on a MXene Nanosheet-Gold Nanourchin Hybrid as a Superoxide Dismutase Mimic for Real-Time Detection of Superoxide Anions Released from Living Cells. ACS Appl Nano Mater. 2024;7(10): 12171-12183.
[15] WANG K, ZHENG XF, QI ML, et al. Flexible screen-printed electrochemical platform to detect hydrogen peroxide for the indication of periodontal disease. Sens Actuator B-Chem. 2023;390:10.
[16] IBRAGIMOVA R, ERHART P, RINKE P, et al. Surface Functionalization of 2D MXenes: Trends in Distribution, Composition, and Electronic Properties. J Phys Chem Lett. 2021;12(9):2377-2384.
[17] NAGUIB M, MOCHALIN VN, BARSOUM MW, et al. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv Mater. 2014;26(7):992-1005.
[18] GAO L, LI C, HUANG W, et al. MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chem Mater. 2020;32(5):1703-1747.
[19] LEI JC, ZHANG X, ZHOU Z. Recent advances in MXene: Preparation, properties, and applications. Front Phys. 2015;10(3):276-286.
[20] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Adv Mater. 2018;30(52):30.
[21] HAN ST, PENG H, SUN Q, et al. An Overview of the Development of Flexible Sensors. Adv Mater. 2017;29(33). doi: 10.1002/adma.201700375.
[22] HAO S, HAN H, YANG Z, et al. Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials. Nano-Micro Lett. 2022;14(1): 178.
[23] YAO Z, SUN H, SUI H, et al. 2D/2D Heterojunction of R-scheme Ti3C2 MXene/MoS2 Nanosheets for Enhanced Photocatalytic Performance. Nanoscale Res Lett. 2020;15(1):78.
[24] LUKATSKAYA MR, KOTA S, LIN Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy. 2017;2(8):1-12.
[25] MAHMOUDVAND G, ROUZBAHANI AK, RAZAVI ZS, et al. Mesenchymal stem cell therapy for non-healing diabetic foot ulcer infection: New insight. Front Bioeng Biotech. 2023;11:1158484.
[26] LI M, ZHANG Y, LIAN L, et al. Flexible Accelerated‐Wound‐Healing Antibacterial MXene‐Based Epidermic Sensor for Intelligent Wearable Human‐Machine Interaction. Adv Funct Mater. 2022;32(47): 2208141.
[27] IRAVANI S, VARMA RS. MXene-based composites against antibiotic-resistant bacteria: current trends and future perspectives. RSC Advances. 2023;13(14): 9665-9677.
[28] GE J, LAN M, ZHOU B, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014;5(1):4596.
[29] GAO F, XUE C, ZHANG T, et al. MXene-Based Functional Platforms for Tumor Therapy. Adv Mater. 2023;35(51):19.
[30] LI Y, FU RZ, DUAN ZG, et al. Artificial Nonenzymatic Antioxidant MXene Nanosheet-Anchored Injectable Hydrogel as a Mild Photothermal-Controlled Oxygen Release Platform for Diabetic Wound Healing. ACS Nano. 2022;16(5):7486-7502.
[31] YANG GH, LIU FL, ZHAO JY, et al. MXenes-based nanomaterials for biosensing and biomedicine. Coord Chem Rev. 2023;479:19.
[32] RASHID B, ANWAR A, SHAHABUDDIN S,
et al. A Comparative Study of Cytotoxicity of PPG and PEG Surface-Modified 2-D Ti3C2 MXene Flakes on Human Cancer Cells and Their Photothermal Response. Materials. 2021;14(16):14.
[33] ALIREZA R, LESTER SG, WEIANG Y, et al.
Sweet-MXene hydrogel with mixed-dimensional components for biomedical applications. J Mech Behav Biomed Mater. 2020;101:6.
[34] LIU L, LI X, NAGAO M, et al. A pH-Indicating Colorimetric Tough Hydrogel Patch towards Applications in a Substrate for Smart Wound Dressings. Polymers. 2017;9(11):15.
[35] MCARDLE C, LAGAN K, SPENCE S, et al. Diabetic foot ulcer wound fluid: the effects of pH on DFU bacteria and infection. J Foot Ankle Res. 2015;8(S1):A8.
[36] PERCIVAL SL, MCCARTY S, HUNT JA, et al.
The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 2014;22(2):174-186.
[37] HOUGHTON VJ, BOWER VM, CHANT DC. Is an increase in skin temperature predictive of neuropathic foot ulceration in people with diabetes? A systematic review and meta-analysis. J Foot Ankle Res. 2013;6:13.
[38] GATT A, FALZON O, CASSAR K, et al. Establishing Differences in Thermographic Patterns between the Various Complications in Diabetic Foot Disease. Int J Endocrinol. 2018;2018:1-7.
[39] 中华医学会内分泌学分会.中国高尿酸血症与痛风诊疗指南(2019)[J].中华内分泌代谢杂志,2020,36(1):1-13.
[40] 赵振国,许继炜,洪娟.血尿酸与胰岛β细胞分泌功能在2型糖尿病周围神经病变患者中交互作用的研究[J].中国糖尿病杂志,2024,32(11):813-820.
[41] WU WC, LAI YW, CHOU YC, et al. Serum Uric Acid Level as a Harbinger of Type 2 Diabetes: A Prospective Observation in Taiwan. Int J Environ Res Public Health. 2020;17(7):2277.
[42] VERMA S, CHOUDHARY J, SINGH KP, et al. Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int J Biol Macromol. 2019;130: 333-341.
[43] ELSAYED NA, ALEPPO G, BANNURU RR, et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care. 2024;47: S20-S42.
[44] FERREIRA L, CARVALHO A, CARVALHO R. Short-term predictors of amputation in patients with diabetic foot ulcers. Diabetes Metab Syndr. 2018;12(6): 875-879.
[45] ZHOU XQ, LI M, XIAO MF, et al. ERβ Accelerates Diabetic Wound Healing by Ameliorating Hyperglycemia-Induced Persistent Oxidative Stress. Front Endocrinol. 2019;10:499.
[46] HAN YF, SUN TJ, TAO R, et al. Clinical application prospect of umbilical cord-derived mesenchymal stem cells on clearance of advanced glycation end products through autophagy on diabetic wound. Eur J Med Res. 2017;22:11.
[47] SINGH A, KUKRETI R, SASO L, et al. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules. 2022;27(3):950.
[48] HOLL J, KOWALEWSKI C, ZIMEK Z, et al.
Chronic Diabetic Wounds and Their Treatment with Skin Substitutes. Cells. 2021;10(3):655.
[49] LÓPEZ-DELIS A, ROSA S, DE SOUZA PEN, et al. Characterization of the Cicatrization Process in Diabetic Foot Ulcers Based on the Production of Reactive Oxygen Species. J Diabetes Res. 2018;2018:4641364.
[50] IAKOVOU E, KOURTI M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front Aging Neurosci. 2022;14:827900.
[51] LOO AEK, WONG YT, HO RJ, et al. Effects of Hydrogen Peroxide on Wound Healing in Mice in Relation to Oxidative Damage. PLoS One. 2012;7(11):e49215.
[52] LI XY, XIU WJ, YANG DL, et al. Ultrasound-responsive microbubbles in antibacterial therapy. Biomed Eng Commun. 2023;2(2): 1-3.
[53] HUANG JM, ZHENG Y, NIU HC, et al. A Multifunctional Hydrogel for Simultaneous Visible H2O2 Monitoring And Accelerating Diabetic Wound Healing. Adv Healthc Mater. 2024; 13(3):e2302328.
[54] XIAO JS, ZHU YX, HUDDLESTON S, et al.
Copper Metal-Organic Framework Nanoparticles Stabilized with Folic Acid Improve Wound Healing in Diabetes. ACS Nano. 2018;12(2):1023-1032.
[55] GONG F, ZHANG Y, CHENG SL, et al. Inhibition of TGFβ1/Smad pathway by NF-ΚB induces inflammation leading to poor wound healing in high glucose. Cells Dev. 2022;172:203814. |