中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (8): 1885-1895.doi: 10.12307/2026.030

• 组织工程骨材料 tissue-engineered bone • 上一篇    下一篇

氧化镁纳米粒调控成骨与血管生成相关基因表达促进骨缺损愈合

吴妍廷,李  宇,廖金凤   

  1. 四川大学华西口腔医院,四川省成都市   610041
  • 收稿日期:2024-11-22 接受日期:2025-02-07 出版日期:2026-03-18 发布日期:2025-07-14
  • 通讯作者: 李宇,教授,四川大学华西口腔医院,四川省成都市 610041 廖金凤,教授,四川大学华西口腔医院,四川省成都市 610041
  • 作者简介:吴妍廷,女,1999年生,四川省成都市人,汉族,主要从事生物材料在颅颌面修复方面的研究。
  • 基金资助:
    国家自然科学基金项目(32171354),项目名称:具有温和磁热效应的磁性纳米粒交联复合水凝胶的构建及其在颅骨缺损修复中的应用基础研究,项目负责人:廖金凤

Magnesium oxide nanoparticles regulate osteogenesis- and angiogenesis-related gene expressions to promote bone defect healing

Wu Yanting, Li Yu, Liao Jinfeng   

  1. West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China

  • Received:2024-11-22 Accepted:2025-02-07 Online:2026-03-18 Published:2025-07-14
  • Contact: Li Yu, Professor, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China Liao Jinfeng, Professor, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
  • About author:Wu Yanting, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 32171354 (to LJF)

摘要:

文题释义:
纳米粒:是指直径在1-100 nm之间的微观颗粒物质,由于具有小尺寸、高比表面积、量子尺寸效应等特殊性质,在许多方面表现出与传统宏观材料截然不同的行为和性能。
磷脂酰肌醇3-激酶/蛋白激酶B信号通路:为细胞内重要的信号转导通路,调控多种生物学过程,包括细胞增殖、分化、存活和血管生成。

背景:氧化镁纳米粒具有优异的生物相容性、生物可降解性及抗菌性能,被认为是骨再生材料的潜在候选物。然而,目前的研究主要集中于氧化镁纳米粒对单一细胞类型的影响,其对多细胞协同作用的调控机制尚不清楚。
目的:探讨氧化镁纳米粒对骨髓间充质干细胞成骨分化和人脐静脉内皮细胞血管生成的调控作用,验证其在体内骨缺损修复中的实际效果。
方法:①采用均匀沉淀法制备氧化镁纳米粒,表征其粒径、电位、不同储存条件下的稳定性、细胞毒性、血液相容性和大鼠体内急性毒性反应;②将不同质量浓度(0,25,50,100 μg/mL)的氧化镁纳米粒分别与大鼠骨髓间充质干细胞共培养,成骨诱导后进行碱性磷酸酶活性、矿化结节形成、成骨相关基因与磷脂酰肌醇3-激酶/蛋白激酶B信号通路表达检测;利用基质胶实验,将不同质量浓度(0,25,50,100 μg/mL)的氧化镁纳米粒分别与人脐静脉内皮细胞共培养,检测血管生成与血管生成因子表达;③在24只SD大鼠颅骨两侧各制作1个直径 5 mm的圆形骨缺损,随机分4组干预,将质量浓度[0(对照),25,50,100 μg/mL]的氧化镁纳米粒悬液直接注射到骨缺损部位,每组6只,术后4,8周进行骨缺损部位Micro-CT检测,术后8周进行骨缺损部位苏木精-伊红与Masson染色。
结果与结论:①氧化镁纳米粒水合粒径为(80±20) nm,多分散指数为0.129,表面电位为(30.29±2.10) mV,在室温条件下储存于PBS中具有良好的粒径与电位稳定性;氧化镁纳米粒具有良好的细胞相容性与血液相容性,在大鼠体内急性毒性实验中未见明显组织毒性损伤。②随着氧化镁纳米粒质量浓度的增加,大鼠骨髓间充质干细胞内碱性磷酸酶活性、矿化结节形成、成骨相关基因与磷脂酰肌醇3-激酶、磷酸化蛋白激酶B的表达均升高;随着氧化镁纳米粒质量浓度的增加,人脐静脉内皮细胞的血管形成、血管生成因子表达均增加。③Micro-CT检测结果显示,氧化镁纳米粒处理组骨缺损区域新骨形成显著高于对照组,并且新骨密度随着氧化镁纳米粒质量浓度的增加而提高;苏木精-伊红与Masson染色显示,随着氧化镁纳米粒质量浓度的增加,骨缺损部位骨组织再生、胶原纤维重建及血管生成逐渐改善。④结果表明,化镁纳米粒可能通过调控磷脂酰肌醇-3-激酶/蛋白激酶B信号通路促进骨髓间充质干细胞的成骨分化和血管生成,有效促进骨缺损的愈合。
https://orcid.org/0000-0002-2223-1630 (吴妍廷) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 氧化镁纳米粒">, 骨髓间充质干细胞">, 成骨分化">, 血管生成">, 骨缺损修复">, 工程化骨材料

Abstract: BACKGROUND: Magnesium oxide nanoparticles have excellent biocompatibility, biodegradability, and antibacterial properties and are considered to be potential candidates for bone regeneration materials. However, current research mainly focuses on the effects of magnesium oxide nanoparticles on single cell types, and its regulatory mechanism for multi-cell synergy is still unclear.
OBJECTIVE: To explore the regulatory effect of magnesium oxide nanoparticles on osteogenic differentiation of bone marrow mesenchymal stem cells and angiogenesis of human umbilical vein endothelial cells, and to verify its actual effect on bone defect repair in vivo. 
METHODS: (1) Magnesium oxide nanoparticles were prepared by uniform precipitation method, and their particle size, potential, stability under different storage conditions, cytotoxicity, blood compatibility and acute toxicity in rats were characterized. (2) Magnesium oxide nanoparticles with different mass concentrations (0, 25, 50, and 100 μg/mL) were co-cultured with rat bone marrow mesenchymal stem cells. Alkaline phosphatase activity, mineral nodule formation, and expression of osteogenic-related genes and phosphatidylinositol 3-kinase/protein kinase B signaling pathway were detected after osteogenic induction. Magnesium oxide nanoparticles with different mass concentrations (0, 25, 50, and 100 μg/mL) were co-cultured with human umbilical vein endothelial cells using matrigel experiment to detect angiogenesis and expression of angiogenic factors. (3) A circular bone defect with a diameter of 5 mm was made on both sides of the skull of 24 SD rats, and the rats were randomly divided into 4 intervention groups. Magnesium oxide nanoparticle suspensions with mass concentrations of [0 (control), 25, 50, 100 μg/mL] were directly injected into the bone defect site, with 6 rats in each group. Micro-CT examination of the bone defect site was performed 4 and 8 weeks after surgery. Hematoxylin-eosin staining and Masson staining were performed at the bone defect site 8 weeks after surgery.
RESULTS AND CONCLUSION: (1) The hydrated particle size of magnesium oxide nanoparticles was (80±20) nm, the polydispersity index was 0.129, and the surface potential was (30.29±2.10) mV. They had good particle size and potential stability when stored in PBS at room temperature. Magnesium oxide nanoparticles had good cell compatibility and blood compatibility, and no obvious tissue toxicity damage was observed in the acute toxicity experiment in rats. (2) With the increase of the mass concentration of magnesium oxide nanoparticles, the activity of alkaline phosphatase, mineralized nodule formation, the expression of osteogenesis-related genes, phosphatidylinositol 3-kinase, and phosphorylated protein kinase B in rat bone marrow mesenchymal stem cells increased. With the increase of the mass concentration of magnesium oxide nanoparticles, the angiogenesis and angiogenic factor expression of human umbilical vein endothelial cells increased. (3) Micro-CT test results showed that the new bone formation in the bone defect area of the magnesium oxide nanoparticle treatment group was significantly higher than that of the control group, and the new bone density increased with the increase of magnesium oxide nanoparticle mass concentration. Hematoxylin-eosin staining and Masson staining showed that with the increase of magnesium oxide nanoparticle mass concentration, bone tissue regeneration, collagen fiber reconstruction and angiogenesis in the bone defect site gradually improved. (4) The results show that magnesium oxide nanoparticles may promote the osteogenic differentiation and angiogenesis of bone marrow mesenchymal stem cells by regulating the phosphatidylinositol-3-kinase/protein kinase B signaling pathway, and effectively promote the healing of bone defects.


Key words: magnesium oxide nanoparticle">, bone marrow mesenchymal stem cell">, osteogenic differentiation">, angiogenesis">, bone defect repair">, engineered bone material

中图分类号: