中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (8): 2033-2013.doi: 10.12307/2026.073
• 生物材料综述 biomaterial review • 上一篇 下一篇
王菘芃,刘玉三,于焕英,高晓丽,徐英江,张晓明,刘 敏
收稿日期:
2024-12-30
接受日期:
2025-04-16
出版日期:
2026-03-18
发布日期:
2025-07-18
通讯作者:
刘敏,硕士,主治医师,滨州医学院附属医院,山东省滨州市 256600
张晓明,硕士,主任医师,滨州医学院附属医院,山东省滨州市 256600
作者简介:
王菘芃,男,1999年生,山东省威海市人,汉族,滨州医学院在读硕士,医师,主要从事口腔修复骨组织工程与改建的相关纳米材料的研究。
刘玉三,男,1986年生,山东省滨州市人,汉族,硕士,副教授,副主任医师,主要从事牙周病学与口腔种植学以及相关纳米材料的研究。
基金资助:
Wang Songpeng, Liu Yusan, Yu Huanying, Gao Xiaoli, Xu Yingjiang, Zhang Xiaoming, Liu Min
Received:
2024-12-30
Accepted:
2025-04-16
Online:
2026-03-18
Published:
2025-07-18
Contact:
Liu Min, MS, Attending physician, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
Zhang Xiaoming, MS, Chief physician, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
About author:
Wang Songpeng, Master candidate, Physician, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
Liu Yusan, MS, Associate professor, Associate chief physician, Binzhou Medical University Hospital, Binzhou 256600, Shandong Province, China
Supported by:
摘要:
文题释义:
沸石基咪唑盐框架8:是一种金属有机框架材料,由锌离子与2-甲基咪唑配位形成,具有典型的沸石拓扑结构,孔径约为3.4 nm,具有高比表面积、良好的热化学稳定性及pH值敏感性,广泛应用于催化、气体分离、生物医药等领域。在生物医学中,沸石基咪唑盐框架8因可降解性和金属离子释放特性可实现细菌捕获、靶向杀菌以及抗炎与组织修复功能。
活性氧动态平衡调控:指在生物系统中通过精确调节活性氧的生成和清除维持其适宜水平的过程。适量活性氧参与细胞信号传导、抗菌及组织修复,但过量活性氧可能引发氧化应激,损伤细胞和组织。动态平衡调控通常通过光催化、抗氧化剂或酶的协同作用实现,广泛应用于抗菌材料开发和再生医学,既可提高抗菌效率又能避免活性氧过量导致的不良反应。
背景:沸石基咪唑盐框架8及其衍生物凭借优异的药物控释能力在组织工程领域展现出广泛的应用潜力。
目的:综述沸石基咪唑盐框架8及其改性材料在活性氧生成与清除中的作用机制,探讨它们在抗肿瘤、抗菌及组织保护领域的应用潜力,分析未来发展方向与挑战。
方法:由第一作者通过中国知网、PubMed等数据库检索2000-2024年相关文献,中文检索关键词为“沸石基咪唑盐框架8,活性氧,抗菌,抗肿瘤,活性氧吸收,活性氧平衡,组织修复”,英文检索关键词为“ZIF-8,ROS,antibacterial,antitumor,ROS absorption,Balance of ROS,Tissue regeneration”,最终筛选69篇高质量文献进行综述分析。
结果与结论:通过调控沸石基咪唑盐框架8及其改性材料的带隙结构、优化电子转移效率可显著提升光生载流子的分离与迁移效率,从而增强催化反应性能,提高活性氧的产生效率,实现更高效、更具靶向性的抗肿瘤及抗菌作用;同时,采用抗氧化酶系统或表面改性技术构建的活性氧清除装置,能够精准平衡多余活性氧,实现对细胞的有效保护。这种基于带隙调控与电子转移优化的双向调控机制,为动态管理活性氧生成与清除提供了重要策略,在抗肿瘤、抗菌及组织保护等领域展现出广阔的应用前景。
https://orcid.org/0009-0000-5317-6614(王菘芃)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
王菘芃, 刘玉三, 于焕英, 高晓丽, 徐英江, 张晓明, 刘 敏. 沸石基咪唑盐框架8纳米材料的活性氧双向调控:从肿瘤治疗、抗菌到细胞保护[J]. 中国组织工程研究, 2026, 30(8): 2033-2013.
Wang Songpeng, Liu Yusan, Yu Huanying, Gao Xiaoli, Xu Yingjiang, Zhang Xiaoming, Liu Min. Bidirectional regulation of reactive oxygen species based on zeolitic imidazolate framework-8 nanomaterials: from tumor therapy and antibacterial activity to cytoprotection[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 2033-2013.
[1] SIES H, BELOUSOV VV, CHANDEL NS, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23(7):499-515. [2] ZHOU X, ZHOU Q, HE Z, et al. ROS Balance Autoregulating Core–Shell CeO2@ZIF-8/Au Nanoplatform for Wound Repair. Nano-Micro Lett. 2024;16(1):156. [3] LIU J, HAN X, ZHANG T, et al. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. J Hematol Oncol. 2023;16(1):116. [4] ZHANG W, LIANG L, YUAN X, et al. Intelligent dual responsive modified ZIF-8 nanoparticles for diagnosis and treatment of osteoarthritis. Mater Design. 2021;209:109964. [5] HE L, HUANG G, LIU H, et al. Highly bioactive zeolitic imidazolate framework-8–capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci Adv. 2020;6(12):eaay9751. [6] YANG C, XU J, YANG D, et al. ICG@ZIF-8: one-step encapsulation of indocyanine green in ZIF-8 and use as a therapeutic nanoplatform. Chin Chem Lett. 2018;29(9): 1421-1424. [7] ZHONG Y, YANG Y, XU Y, et al. Design of a Zn-based nanozyme injectable multifunctional hydrogel with ROS scavenging activity for myocardial infarction therapy. Acta Biomater. 2024;177:62-76. [8] RAN B, RAN L, WANG Z, et al. Photocatalytic antimicrobials: principles, design strategies, and applications. Chem Rev. 2023;123(22): 12371-12430. [9] LI M, HUO L, ZENG J, et al. Switchable ROS Scavenger/Generator for MRI‐Guided Anti‐Inflammation and Anti‐Tumor Therapy with Enhanced Therapeutic Efficacy and Reduced Side Effects. Adv Healthc Mater. 2023;12(5):2202043. [10] YANG D, YANG G, GAI S, et al. Multifunctional theranostics for dual-modal photodynamic synergistic therapy via stepwise water splitting. ACS Appl Mater Interfaces. 2017;9(8):6829-6838. [11] XIE Z, LIANG S, CAI X, et al. O2 -Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Appl Mater Interfaces. 2019;11(35):31671-31680. [12] BAGCHI D, BHATTACHARYA A, DUTTA T, et al. Nano MOF entrapping hydrophobic photosensitizer for dual-stimuli-responsive unprecedented therapeutic action against drug-resistant bacteria. ACS Appl Bio Mater. 2019;2(4):1772-1780. [13] HUI S, LIU Q, HUANG Z, et al. Gold nanoclusters-decorated zeolitic imidazolate frameworks with reactive oxygen species generation for photoenhanced antibacterial study. Bioconjugate Chem. 2020;31(10): 2439-2445. [14] WANG M, NIAN L, CHENG Y, et al. Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer. Chem Eng J. 2021;426:130832. [15] QIU L, OUYANG C, ZHANG W, et al. Zn-MOF hydrogel: regulation of ROS-mediated inflammatory microenvironment for treatment of atopic dermatitis. J Nanobiotechnol. 2023;21(1):163. [16] PANG Y, ZHAO M, XIE Y, et al. Multifunctional Ac@ZIF-8/AgNPs nanoplatform with pH-responsive and ROS scavenging antibacterial properties promotes infected wound healing. Chem Eng J. 2024;489:151485. [17] ZHANG C, LI Q, XING J, et al. Tannic acid and zinc ion coordination of nanase for the treatment of inflammatory bowel disease by promoting mucosal repair and removing reactive oxygen and nitrogen species. Acta Biomater. 2024;177:347-360. [18] GU Y, YOU Y, YANG Y, et al. Multifunctional EGCG@ZIF-8 Nanoplatform with Photodynamic Therapy/Chemodynamic Therapy Antibacterial Properties Promotes Infected Wound Healing. ACS Appl Mater Interfaces. 2024;16(38):50238-50250. [19] CAI J, LIU S, ZHONG Q, et al. Multifunctional PDA/ZIF8 based hydrogel dressing modulates the microenvironment to accelerate chronic wound healing by ROS scavenging and macrophage polarization. Chem Eng J. 2024;487:150632. [20] WANG Y, YAN J, WEN N, et al. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials. 2020;230:119619. [21] PANDEY A, KULKARNI S, VINCENT AP, et al. Hyaluronic acid-drug conjugate modified core-shell MOFs as pH responsive nanoplatform for multimodal therapy of glioblastoma. Int J Pharm. 2020;588:119735. [22] ZOU Y, WENG J, QIN Z, et al. Metal–organic framework- and graphene quantum dot-incorporated nanofibers as dual stimuli-responsive platforms for day/night antibacterial bio-protection. Chem Eng J. 2023;473:145365. [23] REN SZ, WANG B, ZHU XH, et al. Oxygen self-sufficient core–shell metal–organic framework-based smart nanoplatform for enhanced synergistic chemotherapy and photodynamic therapy. ACS Appl Mater Interfaces. 2020;12(22):24662-24674. [24] LEI Z, JU Y, LIN Y, et al. Reactive oxygen species synergistic pH/H2O2 -responsive poly( l -lactic acid)- block -poly(sodium 4-styrenesulfonate)/citrate-Fe(III)@ZIF-8 hybrid nanocomposites for controlled drug release. ACS Appl Bio Mater. 2019; 2(8):3648-3658. [25] ZHONG Y, PENG Z, PENG Y, et al. Construction of Fe-doped ZIF-8/DOX nanocomposites for ferroptosis strategy in the treatment of breast cancer. J Mater Chem B. 2023;11(27):6335-6345. [26] DONG MJ, LI W, XIANG Q, et al. Engineering Metal–Organic Framework Hybrid AIEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS Appl Mater Interfaces. 2022;14(26):29599-29612. [27] YANG P, LIU S, CHEN Z, et al. Proton nanomodulators for enhanced Mn2+-mediated chemodynamic therapy of tumors via HCO3− regulation. J Nanobiotechnol. 2024;22(1):670. [28] KONG J, LAI J, WANG M, et al. A glutathione-consuming bimetallic nano-bomb with the combination of photothermal and chemodynamic therapy for tumors: an in vivo and in vitro study. Int J Nanomed. 2024;19:8541-8553. [29] JIA W, JIN B, XU W, et al. pH-Responsive and Actively Targeted Metal–Organic Framework Structures for Multimodal Antitumor Therapy and Inhibition of Tumor Invasion and Metastasis. ACS Appl Mater Interfaces. 2023;15(43):50069-50082. [30] LUO T, YANG H, WANG R, et al. Bifunctional cascading nanozymes based on carbon dots promotes photodynamic therapy by regulating hypoxia and glycolysis. ACS Nano. 2023;17(17):16715-16730. [31] ZHAO S, CHEN M, YU Z, et al. Biomimetic cytomembrane-coated ZIF-8-loaded DMDD nanoparticle and sonodynamic co-therapy for cancer. Ann Transl Med. 2022;10(18):971-971. [32] DIXON SJ, STOCKWELL BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10(1):9-17. [33] LI G, LU X, ZHANG S, et al. Multi-Enzyme Cascade-Triggered Nitric Oxide Release Nanoplatform Combined with Chemo Starvation-like Therapy for Multidrug-Resistant Cancers. ACS Appl Mater Interfaces. 2023;15(26):31285-31299. [34] NISHIZAWA H, MATSUMOTO M, CHEN G, et al. Lipid peroxidation and the subsequent cell death transmitting from ferroptotic cells to neighboring cells. Cell Death Dis. 2021;12(4):332. [35] YANG RG, FU YM, WANG HN, et al. ZIF-8/covalent organic framework for enhanced CO2 photocatalytic reduction in gas-solid system. Chem Eng J. 2022;450:138040. [36] BAE I, KIM T G, KIM T, et al. Phenethyl isothiocyanate-conjugated chitosan oligosaccharide nanophotosensitizers for photodynamic treatment of human cancer cells. Int J Mol Sci. 2022;23(22):13802. [37] LI C, YE J, YANG X, et al. Fe/Mn Bimetal-Doped ZIF-8-Coated Luminescent Nanoparticles with Up/Downconversion Dual-Mode Emission for Tumor Self-Enhanced NIR-II Imaging and Catalytic Therapy. ACS Nano. 2022;16(11):18143-18156. [38] WU B, FU J, ZHOU Y, et al. Metal–Organic Framework-Based Chemo-Photothermal Combinational System for Precise, Rapid, and Efficient Antibacterial Therapeutics. Pharmaceutics. 2019;11(9):463. [39] SHEN B, WANG Y, WANG X, et al. A Cruciform Petal-like (ZIF-8) with Bactericidal Activity against Foodborne Gram-Positive Bacteria for Antibacterial Food Packaging. Int J Mol Sci. 2022;23(14): 7510. [40] GUO C, WANG Y, LIU H, et al. A refractory wound healing hydrogel with integrated functions of photothermal anti-infection, superoxide dismutase mimicking activity, and intelligent infection management. Mater Des. 2022;224:111280. [41] LI Q, FENG R, CHANG Z, et al. Hybrid biomimetic assembly enzymes based on ZIF-8 as “intracellular scavenger” mitigating neuronal damage caused by oxidative stress. Front Bioeng Biotechnol. 2022;10:991949. [42] ZHANG Q, ZHANG Y, CHEN H, et al. Injectable hydrogel with doxorubicin-loaded ZIF-8 nanoparticles for tumor postoperative treatments and wound repair. Sci Rep. 2024; 14(1):9983. [43] HUANG E, LI H, HAN H, et al. Polydopamine-coated kaempferol-loaded MOF nanoparticles: a novel therapeutic strategy for postoperative neurocognitive disorder. Int J Nanomed. 2024;19:4569-4588. [44] GONG J, WANG H, XIE C, et al. A multifunctional injectable hydrogel for boosted diabetic wound healing assisted by Quercetin-ZIF system. Chem Eng J. 2024; 495:153425. [45] ZHANG Y, JIN Y, CUI H, et al. Nanozyme-based catalytic theranostics. RSC Adv. 2020;10(1):10-20. [46] BAO X, ZHAO J, SUN J, et al. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease. ACS Nano. 2018;12(9):8882-8892. [47] YIN X, RAN S, CHENG H, et al. Polydopamine-modified ZIF-8 nanoparticles as a drug carrier for combined chemo-photothermal osteosarcoma therapy. Colloids Surf B Biointerfaces. 2022;216:112507. [48] HUANG S, HONG X, ZHAO M, et al. Nanocomposite hydrogels for biomedical applications. Bioeng Transl Med. 2022;7(3): e10315. [49] MENG X, JIA K, SUN K, et al. Smart responsive nanoplatform via in situ forming disulfiram-copper ion chelation complex for cancer combination chemotherapy. Chem Eng J. 2021;415:128947. [50] WANG J, MA X, CHEN M, et al. Prussian blue@zeolitic imidazolate framework composite toward solar-triggered biodecontamination. Chem Eng J. 2023;452:138562. [51] ZHOU H, LI Z, JING S, et al. Repair spinal cord injury with a versatile anti-oxidant and neural regenerative nanoplatform. J Nanobiotechnol. 2024;22(1):351. [52] LI R, CHEN T, LU J, et al. Metal–organic frameworks doped with metal ions for efficient sterilization: Enhanced photocatalytic activity and photothermal effect. Water Res. 2023;229:119366. [53] YAN X, CHEN C, REN Y, et al. A dual-pathway pyroptosis inducer based on Au–Cu2-xSe@ZIF-8 enhances tumor immunotherapy by disrupting the zinc ion homeostasis. Acta Biomater. 2024; 188:329-343. [54] MAVIL-GUERRERO E, VAZQUEZ-DUHALT R, JUAREZ-MORENO K. Exploring the cytotoxicity mechanisms of copper ions and copper oxide nanoparticles in cells from the excretory system. Chemosphere. 2024;347:140713. [55] FORMAN HJ, ZHANG H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):68-709. [56] LING Y, NIE D, HUANG Y, et al. Antioxidant Cascade Nanoenzyme Antagonize Inflammatory Pain by Modulating MAPK/p‐65 Signaling Pathway. Adv Sci. 2023;10(12):2206934. [57] WANG X, REN M, WANG N, et al. Zeolitic imidazolate framework-8@polydopamine decorated carboxylated chitosan hydrogel with photocatalytic and photothermal antibacterial activity for infected wound healing. J Colloid Interface Sci. 2024;675:1040-1051. [58] SUN Y, SUN X, LI X, et al. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials. 2021;268:120614. [59] MA T, ZHAI X, HUANG Y, et al. A Smart Nanoplatform with Photothermal Antibacterial Capability and Antioxidant Activity for Chronic Wound Healing. Adv Healthc Mater. 2021;10(13):2100033. [60] WANG Q, SUN Y, LI S, et al. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Adv. 2020;10(62):37600-37620. [61] HOOP M, WALDE CF, RICCÒ R, et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl Mater Today. 2018;11:13-21. [62] KUMARI S, HOWLETT TS, EHRMAN RN, et al. In vivo biocompatibility of ZIF-8 for slow release via intranasal administration. Chem Sci. 2023;14(21):5774-5782. [63] MAO Y, WANG L, XU Z, et al. Developing a Selection Framework for Zinc Ion-Based Biomaterial Design: Guided by the Biosafety Assessment of ZIF-8 and ZnO. ACS Biomater Sci Eng. 2024;10(5):2967-2982. [64] ZHANG S, YE J, LIU X, et al. Dual stimuli-responsive smart fibrous membranes for efficient photothermal/photodynamic/chemo-therapy of drug-resistant bacterial infection. Chem Eng J. 2022;432:134351. [65] CHEN MW, LU QJ, CHEN YJ, et al. NIR-PTT/ROS-Scavenging/Oxygen-Enriched Synergetic Therapy for Rheumatoid Arthritis by a pH-Responsive Hybrid CeO2 -ZIF-8 Coated with Polydopamine. ACS Biomater Sci Eng. 2022;8(8):3361-3376. [66] MI X, HU M, DONG M, et al. Folic Acid Decorated Zeolitic Imidazolate Framework (ZIF-8) Loaded with Baicalin as a Nano-Drug Delivery System for Breast Cancer Therapy. Int J Nanomedicine. 2021;16: 8337-8352. [67] CHEN P, HE M, CHEN B, et al. Size- and dose-dependent cytotoxicity of ZIF-8 based on single cell analysis. Ecotoxicol Environ Saf. 2020;205:111110. [68] CHEUNG EC, DENICOLA GM, NIXON C, et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer. Cancer Cell. 2020; 37(2):168-182.e4. [69] GENG C, HE S, YU S, et al. Achieving clearance of drug‐resistant bacterial infection and rapid cutaneous wound regeneration using an ROS‐balancing‐engineered heterojunction. Adv Mater. 2024;36(16):2310599. |
[1] | 王奇飒, 卢雨征, 韩秀峰, 赵文玲, 石海涛, 徐 哲. 3D打印甲基丙烯酰化透明质酸/脱细胞皮肤水凝胶支架的细胞相容性[J]. 中国组织工程研究, 2026, 30(8): 1912-1920. |
[2] | 高艳果, 郭 旭, 李晓晗, 陈仕琦, 朱海涛, 黄良永, 叶 方, 卢 伟, 王启斌, 郑 涛, 陈 黎. 糖尿病皮肤创面模型小鼠正交实验优选“红黄白”凝胶的处方配比[J]. 中国组织工程研究, 2026, 30(8): 1921-1928. |
[3] | 刘宏杰, 牟秋菊, 申玉雪, 梁 飞, 祝丽丽. 金属有机框架/羧甲基壳聚糖-氧化海藻酸钠/富血小板血浆水凝胶促糖尿病感染创面愈合[J]. 中国组织工程研究, 2026, 30(8): 1929-1939. |
[4] | 闵昌琴, 黄 英. pH值/近红外激光刺激响应型载药系统的构建及在抗口腔鳞癌中的应用[J]. 中国组织工程研究, 2026, 30(8): 1940-1951. |
[5] | 邵子瑜, 李 倩, 曲曼姑丽·阿布都克力木, 韩友军, 胡 杨. 三种比例双相磷酸钙的制备及性能表征[J]. 中国组织工程研究, 2026, 30(8): 1952-1961. |
[6] | 郑旭颖, 胡洪成, 许礼兵, 韩建民, 邸 萍. 不同载荷形式和内连接形状下两段式粘接固位氧化锆种植体的应力大小和分布[J]. 中国组织工程研究, 2026, 30(8): 1979-1987. |
[7] | 周红丽, 王晓龙, 郭 蕊, 姚轩轩, 郭 茹, 周熊涛, 何祥一. 纳米羟基磷灰石/海藻酸钠/聚己内酯/阿仑膦酸钠支架的制备及表征[J]. 中国组织工程研究, 2026, 30(8): 1962-1970. |
[8] | 杨利霞, 刁立琴, 李 华, 冯亚婵, 刘 鑫, 于月欣, 窦茜茜, 谷辉峰, 徐兰举. 重组Ⅲ型人源化胶原蛋白改善大鼠光老化皮肤的调控机制[J]. 中国组织工程研究, 2026, 30(8): 1988-2000. |
[9] | 董春阳, 周天恩, 莫孟学, 吕文权, 高 明, 朱瑞凯, 高志伟. 二甲双胍联合血水草敷料治疗深Ⅱ度烧伤创面的作用机制[J]. 中国组织工程研究, 2026, 30(8): 2001-2013. |
[10] | 潘之怡, 黄嘉雯, 薛文君, 徐建达. MXene柔性电子传感器的优势及在糖尿病足创面监测中的应用[J]. 中国组织工程研究, 2026, 30(8): 2023-2032. |
[11] | 孙 蕾, 张 琦, 张 宇. 绿原酸蛋白微球/聚己内酯静电纺丝膜的促成骨效应[J]. 中国组织工程研究, 2026, 30(8): 1877-1884. |
[12] | 吴妍廷, 李 宇, 廖金凤. 氧化镁纳米粒调控成骨与血管生成相关基因表达促进骨缺损愈合[J]. 中国组织工程研究, 2026, 30(8): 1885-1895. |
[13] | 黎清斌, 林建辉, 黄文杰, 王明爽, 杜间开, 劳永锵. 膝关节周围骨巨细胞瘤病灶扩大刮除后填充骨水泥:软骨下植骨与不植骨的比较[J]. 中国组织工程研究, 2026, 30(8): 1896-1902. |
[14] | 蒋星海, 宋玉林, 李德津, 邵建敏, 徐军志, 刘华凯, 吴应国, 沈岳辉, 冯思诚. 血管内皮生长因子165基因转染骨髓间充质干细胞构建血管化两亲性肽凝胶模块[J]. 中国组织工程研究, 2026, 30(8): 1903-1911. |
[15] | 杨学涛, 朱梦菡, 张宸熙, 孙一民, 叶 玲. 抗氧化纳米材料在口腔中的应用和不足[J]. 中国组织工程研究, 2026, 30(8): 2044-2053. |
沸石基咪唑盐框架8(ZIF-8)因其高比表面积、优异的热化学稳定性及 pH值响应特性,在药物控释、抗菌、抗肿瘤及组织修复等领域展现出广泛的应用潜力。以往研究主要聚焦于 ZIF-8在活性氧产生方面的应用,因为其能够降低药物滥用引发的耐药性。然而过量活性氧可能引发氧化损伤、影响正常组织功能,因此逐渐被人们关注。相比于传统的治疗模式,基于ZIF-8的智能活性氧杠杆系统可在病理环境下精准释放活性氧,高效杀伤肿瘤或病原体,并在治疗后期自适应降低活性氧水平,缓解氧化应激,保护正常组织,有效减少耐药性及不良反应。该文进一步总结了ZIF-8及其衍生物在活性氧产生与调控中的研究进展,探讨其在抗菌、抗肿瘤及组织修复等领域的应用潜力,并提出优化策略,以期为高效、安全、可控的活性氧相关治疗体系的构建提供新的思路和未来发展方向。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||