[1] SIES H, BELOUSOV VV, CHANDEL NS, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23(7):499-515.
[2] ZHOU X, ZHOU Q, HE Z, et al. ROS Balance Autoregulating Core–Shell CeO2@ZIF-8/Au Nanoplatform for Wound Repair. Nano-Micro Lett. 2024;16(1):156.
[3] LIU J, HAN X, ZHANG T, et al. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. J Hematol Oncol. 2023;16(1):116.
[4] ZHANG W, LIANG L, YUAN X, et al. Intelligent dual responsive modified ZIF-8 nanoparticles for diagnosis and treatment of osteoarthritis. Mater Design. 2021;209:109964.
[5] HE L, HUANG G, LIU H, et al. Highly bioactive zeolitic imidazolate framework-8–capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci Adv. 2020;6(12):eaay9751.
[6] YANG C, XU J, YANG D, et al. ICG@ZIF-8: one-step encapsulation of indocyanine green in ZIF-8 and use as a therapeutic nanoplatform. Chin Chem Lett. 2018;29(9): 1421-1424.
[7] ZHONG Y, YANG Y, XU Y, et al. Design of a Zn-based nanozyme injectable multifunctional hydrogel with ROS scavenging activity for myocardial infarction therapy. Acta Biomater. 2024;177:62-76.
[8] RAN B, RAN L, WANG Z, et al. Photocatalytic antimicrobials: principles, design strategies, and applications. Chem Rev. 2023;123(22): 12371-12430.
[9] LI M, HUO L, ZENG J, et al. Switchable ROS Scavenger/Generator for MRI‐Guided Anti‐Inflammation and Anti‐Tumor Therapy with Enhanced Therapeutic Efficacy and Reduced Side Effects. Adv Healthc Mater. 2023;12(5):2202043.
[10] YANG D, YANG G, GAI S, et al. Multifunctional theranostics for dual-modal photodynamic synergistic therapy via stepwise water splitting. ACS Appl Mater Interfaces. 2017;9(8):6829-6838.
[11] XIE Z, LIANG S, CAI X, et al. O2 -Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Appl Mater Interfaces. 2019;11(35):31671-31680.
[12] BAGCHI D, BHATTACHARYA A, DUTTA T, et al. Nano MOF entrapping hydrophobic photosensitizer for dual-stimuli-responsive unprecedented therapeutic action against drug-resistant bacteria. ACS Appl Bio Mater. 2019;2(4):1772-1780.
[13] HUI S, LIU Q, HUANG Z, et al. Gold nanoclusters-decorated zeolitic imidazolate frameworks with reactive oxygen species generation for photoenhanced antibacterial study. Bioconjugate Chem. 2020;31(10): 2439-2445.
[14] WANG M, NIAN L, CHENG Y, et al. Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer. Chem Eng J. 2021;426:130832.
[15] QIU L, OUYANG C, ZHANG W, et al. Zn-MOF hydrogel: regulation of ROS-mediated inflammatory microenvironment for treatment of atopic dermatitis. J Nanobiotechnol. 2023;21(1):163.
[16] PANG Y, ZHAO M, XIE Y, et al. Multifunctional Ac@ZIF-8/AgNPs nanoplatform with pH-responsive and ROS scavenging antibacterial properties promotes infected wound healing. Chem Eng J. 2024;489:151485.
[17] ZHANG C, LI Q, XING J, et al. Tannic acid and zinc ion coordination of nanase for the treatment of inflammatory bowel disease by promoting mucosal repair and removing reactive oxygen and nitrogen species. Acta Biomater. 2024;177:347-360.
[18] GU Y, YOU Y, YANG Y, et al. Multifunctional EGCG@ZIF-8 Nanoplatform with Photodynamic Therapy/Chemodynamic Therapy Antibacterial Properties Promotes Infected Wound Healing. ACS Appl Mater Interfaces. 2024;16(38):50238-50250.
[19] CAI J, LIU S, ZHONG Q, et al. Multifunctional PDA/ZIF8 based hydrogel dressing modulates the microenvironment to accelerate chronic wound healing by ROS scavenging and macrophage polarization. Chem Eng J. 2024;487:150632.
[20] WANG Y, YAN J, WEN N, et al. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials. 2020;230:119619.
[21] PANDEY A, KULKARNI S, VINCENT AP, et al. Hyaluronic acid-drug conjugate modified core-shell MOFs as pH responsive nanoplatform for multimodal therapy of glioblastoma. Int J Pharm. 2020;588:119735.
[22] ZOU Y, WENG J, QIN Z, et al. Metal–organic framework- and graphene quantum dot-incorporated nanofibers as dual stimuli-responsive platforms for day/night antibacterial bio-protection. Chem Eng J. 2023;473:145365.
[23] REN SZ, WANG B, ZHU XH, et al. Oxygen self-sufficient core–shell metal–organic framework-based smart nanoplatform for enhanced synergistic chemotherapy and photodynamic therapy. ACS Appl Mater Interfaces. 2020;12(22):24662-24674.
[24] LEI Z, JU Y, LIN Y, et al. Reactive oxygen species synergistic pH/H2O2 -responsive poly( l -lactic acid)- block -poly(sodium 4-styrenesulfonate)/citrate-Fe(III)@ZIF-8 hybrid nanocomposites for controlled drug release. ACS Appl Bio Mater. 2019; 2(8):3648-3658.
[25] ZHONG Y, PENG Z, PENG Y, et al. Construction of Fe-doped ZIF-8/DOX nanocomposites for ferroptosis strategy in the treatment of breast cancer. J Mater Chem B. 2023;11(27):6335-6345.
[26] DONG MJ, LI W, XIANG Q, et al. Engineering Metal–Organic Framework Hybrid AIEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS Appl Mater Interfaces. 2022;14(26):29599-29612.
[27] YANG P, LIU S, CHEN Z, et al. Proton nanomodulators for enhanced Mn2+-mediated chemodynamic therapy of tumors via HCO3− regulation. J Nanobiotechnol. 2024;22(1):670.
[28] KONG J, LAI J, WANG M, et al. A glutathione-consuming bimetallic nano-bomb with the combination of photothermal and chemodynamic therapy for tumors: an in vivo and in vitro study. Int J Nanomed. 2024;19:8541-8553.
[29] JIA W, JIN B, XU W, et al. pH-Responsive and Actively Targeted Metal–Organic Framework Structures for Multimodal Antitumor Therapy and Inhibition of Tumor Invasion and Metastasis. ACS Appl Mater Interfaces. 2023;15(43):50069-50082.
[30] LUO T, YANG H, WANG R, et al. Bifunctional cascading nanozymes based on carbon dots promotes photodynamic therapy by regulating hypoxia and glycolysis. ACS Nano. 2023;17(17):16715-16730.
[31] ZHAO S, CHEN M, YU Z, et al. Biomimetic cytomembrane-coated ZIF-8-loaded DMDD nanoparticle and sonodynamic co-therapy for cancer. Ann Transl Med. 2022;10(18):971-971.
[32] DIXON SJ, STOCKWELL BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10(1):9-17.
[33] LI G, LU X, ZHANG S, et al. Multi-Enzyme Cascade-Triggered Nitric Oxide Release Nanoplatform Combined with Chemo Starvation-like Therapy for Multidrug-Resistant Cancers. ACS Appl Mater Interfaces. 2023;15(26):31285-31299.
[34] NISHIZAWA H, MATSUMOTO M, CHEN G,
et al. Lipid peroxidation and the subsequent cell death transmitting from ferroptotic cells to neighboring cells. Cell Death Dis. 2021;12(4):332.
[35] YANG RG, FU YM, WANG HN, et al. ZIF-8/covalent organic framework for enhanced CO2 photocatalytic reduction in gas-solid system. Chem Eng J. 2022;450:138040.
[36] BAE I, KIM T G, KIM T, et al. Phenethyl isothiocyanate-conjugated chitosan oligosaccharide nanophotosensitizers for photodynamic treatment of human cancer cells. Int J Mol Sci. 2022;23(22):13802.
[37] LI C, YE J, YANG X, et al. Fe/Mn Bimetal-Doped ZIF-8-Coated Luminescent Nanoparticles with Up/Downconversion Dual-Mode Emission for Tumor Self-Enhanced NIR-II Imaging and Catalytic Therapy. ACS Nano. 2022;16(11):18143-18156.
[38] WU B, FU J, ZHOU Y, et al. Metal–Organic Framework-Based Chemo-Photothermal Combinational System for Precise, Rapid, and Efficient Antibacterial Therapeutics. Pharmaceutics. 2019;11(9):463.
[39] SHEN B, WANG Y, WANG X, et al. A Cruciform Petal-like (ZIF-8) with Bactericidal Activity against Foodborne Gram-Positive Bacteria for Antibacterial Food Packaging. Int J Mol Sci. 2022;23(14): 7510.
[40] GUO C, WANG Y, LIU H, et al. A refractory wound healing hydrogel with integrated functions of photothermal anti-infection, superoxide dismutase mimicking activity, and intelligent infection management. Mater Des. 2022;224:111280.
[41] LI Q, FENG R, CHANG Z, et al. Hybrid biomimetic assembly enzymes based on ZIF-8 as “intracellular scavenger” mitigating neuronal damage caused by oxidative stress. Front Bioeng Biotechnol. 2022;10:991949.
[42] ZHANG Q, ZHANG Y, CHEN H, et al. Injectable hydrogel with doxorubicin-loaded ZIF-8 nanoparticles for tumor postoperative treatments and wound repair. Sci Rep. 2024; 14(1):9983.
[43] HUANG E, LI H, HAN H, et al. Polydopamine-coated kaempferol-loaded MOF nanoparticles: a novel therapeutic strategy for postoperative neurocognitive disorder. Int J Nanomed. 2024;19:4569-4588.
[44] GONG J, WANG H, XIE C, et al. A multifunctional injectable hydrogel for boosted diabetic wound healing assisted by Quercetin-ZIF system. Chem Eng J. 2024; 495:153425.
[45] ZHANG Y, JIN Y, CUI H, et al. Nanozyme-based catalytic theranostics. RSC Adv. 2020;10(1):10-20.
[46] BAO X, ZHAO J, SUN J, et al. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease. ACS Nano. 2018;12(9):8882-8892.
[47] YIN X, RAN S, CHENG H, et al. Polydopamine-modified ZIF-8 nanoparticles as a drug carrier for combined chemo-photothermal osteosarcoma therapy. Colloids Surf B Biointerfaces. 2022;216:112507.
[48] HUANG S, HONG X, ZHAO M, et al. Nanocomposite hydrogels for biomedical applications. Bioeng Transl Med. 2022;7(3): e10315.
[49] MENG X, JIA K, SUN K, et al. Smart responsive nanoplatform via in situ forming disulfiram-copper ion chelation complex for cancer combination chemotherapy. Chem Eng J. 2021;415:128947.
[50] WANG J, MA X, CHEN M, et al. Prussian blue@zeolitic imidazolate framework composite toward solar-triggered biodecontamination. Chem Eng J. 2023;452:138562.
[51] ZHOU H, LI Z, JING S, et al. Repair spinal cord injury with a versatile anti-oxidant and neural regenerative nanoplatform. J Nanobiotechnol. 2024;22(1):351.
[52] LI R, CHEN T, LU J, et al. Metal–organic frameworks doped with metal ions for efficient sterilization: Enhanced photocatalytic activity and photothermal effect. Water Res. 2023;229:119366.
[53] YAN X, CHEN C, REN Y, et al. A dual-pathway pyroptosis inducer based on Au–Cu2-xSe@ZIF-8 enhances tumor immunotherapy by disrupting the zinc ion homeostasis. Acta Biomater. 2024; 188:329-343.
[54] MAVIL-GUERRERO E, VAZQUEZ-DUHALT R, JUAREZ-MORENO K. Exploring the cytotoxicity mechanisms of copper ions and copper oxide nanoparticles in cells from the excretory system. Chemosphere. 2024;347:140713.
[55] FORMAN HJ, ZHANG H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):68-709.
[56] LING Y, NIE D, HUANG Y, et al. Antioxidant Cascade Nanoenzyme Antagonize Inflammatory Pain by Modulating MAPK/p‐65 Signaling Pathway. Adv Sci. 2023;10(12):2206934.
[57] WANG X, REN M, WANG N, et al. Zeolitic imidazolate framework-8@polydopamine decorated carboxylated chitosan hydrogel with photocatalytic and photothermal antibacterial activity for infected wound healing. J Colloid Interface Sci. 2024;675:1040-1051.
[58] SUN Y, SUN X, LI X, et al. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials. 2021;268:120614.
[59] MA T, ZHAI X, HUANG Y, et al. A Smart Nanoplatform with Photothermal Antibacterial Capability and Antioxidant Activity for Chronic Wound Healing. Adv Healthc Mater. 2021;10(13):2100033.
[60] WANG Q, SUN Y, LI S, et al. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Adv. 2020;10(62):37600-37620.
[61] HOOP M, WALDE CF, RICCÒ R, et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl Mater Today. 2018;11:13-21.
[62] KUMARI S, HOWLETT TS, EHRMAN RN,
et al. In vivo biocompatibility of ZIF-8 for slow release via intranasal administration. Chem Sci. 2023;14(21):5774-5782.
[63] MAO Y, WANG L, XU Z, et al. Developing a Selection Framework for Zinc Ion-Based Biomaterial Design: Guided by the Biosafety Assessment of ZIF-8 and ZnO. ACS Biomater Sci Eng. 2024;10(5):2967-2982.
[64] ZHANG S, YE J, LIU X, et al. Dual stimuli-responsive smart fibrous membranes for efficient photothermal/photodynamic/chemo-therapy of drug-resistant bacterial infection. Chem Eng J. 2022;432:134351.
[65] CHEN MW, LU QJ, CHEN YJ, et al. NIR-PTT/ROS-Scavenging/Oxygen-Enriched Synergetic Therapy for Rheumatoid Arthritis by a pH-Responsive Hybrid CeO2 -ZIF-8 Coated with Polydopamine. ACS Biomater Sci Eng. 2022;8(8):3361-3376.
[66] MI X, HU M, DONG M, et al. Folic Acid Decorated Zeolitic Imidazolate Framework (ZIF-8) Loaded with Baicalin as a Nano-Drug Delivery System for Breast Cancer Therapy. Int J Nanomedicine. 2021;16: 8337-8352.
[67] CHEN P, HE M, CHEN B, et al. Size- and dose-dependent cytotoxicity of ZIF-8 based on single cell analysis. Ecotoxicol Environ Saf. 2020;205:111110.
[68] CHEUNG EC, DENICOLA GM, NIXON C, et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer. Cancer Cell. 2020; 37(2):168-182.e4.
[69] GENG C, HE S, YU S, et al. Achieving clearance of drug‐resistant bacterial infection and rapid cutaneous wound regeneration using an ROS‐balancing‐engineered heterojunction. Adv Mater. 2024;36(16):2310599. |