中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (8): 2044-2053.doi: 10.12307/2026.026
• 生物材料综述 biomaterial review • 上一篇
杨学涛,朱梦菡,张宸熙,孙一民,叶 玲
收稿日期:
2024-11-25
接受日期:
2025-01-24
出版日期:
2026-03-18
发布日期:
2025-07-18
通讯作者:
叶玲,博士,教授,口腔疾病防治全国重点实验室,国家口腔疾病临床医学研究中心,四川大学华西口腔医院牙体牙髓科,四川省成都市 610041
共同孙一民,博士,副教授,口腔疾病防治全国重点实验室,国家口腔疾病临床医学研究中心,四川大学华西口腔医院牙体牙髓科,四川省成都市 610041
作者简介:
杨学涛,男,1999年生,四川省凉山州人,汉族,四川大学华西口腔医学院在读硕士,主要从事抗氧化对口腔的影响研究。
基金资助:
Yang Xuetao, Zhu Menghan, Zhang Chenxi, Sun Yimin, Ye Ling
Received:
2024-11-25
Accepted:
2025-01-24
Online:
2026-03-18
Published:
2025-07-18
Contact:
Ye Ling, MD, Professor, Department of Endodontics, National Key Laboratory of Oral Disease Prevention and Control & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
Sun Yimin, MD, Associate professor, Department of Endodontics, National Key Laboratory of Oral Disease Prevention and Control & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
About author:
Yang Xuetao, Master candidate, Department of Endodontics, National Key Laboratory of Oral Disease Prevention and Control & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
Supported by:
摘要:
文题释义:
氧化应激:一般是指机体遭受各种有害刺激时,体内过氧化氢和羟基自由基等活性氧产生过多,超出了机体的抗氧化能力范围,氧化系统和抗氧化系统失衡,倾向于氧化,从而对机体产生负面作用,是导致衰老和疾病的一个重要因素。
抗氧化纳米材料:能够中和活性氧、改善氧化应激且三维空间尺度中至少有一维处于纳米量级的有机或无机材料。
背景:氧化应激与多种口腔疾病的发病有关,抗氧化纳米材料具有增强的活性氧清除特性,可以改善氧化应激,在口腔疾病中具有广阔的应用前景。
目的:总结近年来抗氧化纳米材料的研究进展以及在口腔疾病中的应用、不足和未来研究方向。
方法:以“reactive oxygen,antioxidant,nano,oxidative stress,oral”为关键词在PubMed和Web of Science数据库中检索文献,以“活性氧,抗氧化,纳米,氧化应激,口腔”为关键词在中国知网中检索文献,排除与研究主题关联性不强的文章,最终纳入103篇文献进行综述。
结果与结论:氧化应激是口腔多种疾病发病的机制之一,清除过量产生的活性氧并纠正氧化与抗氧化失调,是治疗口腔相关疾病的重要措施。抗氧化纳米材料因纳米结构特性具有高效的活性氧清除能力,能够改善机体氧化应激,促进相关疾病的恢复,在口腔相关疾病的研究应用中具有显著效果。抗氧化纳米材料合成原料昂贵、工艺复杂且在体内应用的长期安全性不明确,还需要进一步研究改进和验证。未来抗氧化纳米材料在口腔疾病中的研究应用需多学科交叉,同时结合大数据和人工智能等领域,在材料的设计、实验、应用和验证等方面进行优化,以实现安全、有效且舒适的个性化口腔疾病治疗。
https://orcid.org/0009-0006-7797-1173 (杨学涛)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
杨学涛, 朱梦菡, 张宸熙, 孙一民, 叶 玲. 抗氧化纳米材料在口腔中的应用和不足[J]. 中国组织工程研究, 2026, 30(8): 2044-2053.
Yang Xuetao, Zhu Menghan, Zhang Chenxi, Sun Yimin, Ye Ling. Applications and limitations of antioxidant nanomaterials in oral cavity[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 2044-2053.
[1] ROWIŃSKA I, SZYPERSKA-ŚLASKA A, ZARICZNY P, et al. The influence of diet on oxidative stress and inflammation induced by bacterial biofilms in the human oral cavity. Materials (Basel). 2021;14(6):1444. [2] SARDARO N, DELLA VELLA F, INCALZA MA, et al. Oxidative stress and oral mucosal diseases: an overview. In Vivo. 2019;33(2):289-296. [3] BIRBEN E, SAHINER UM, SACKESEN C, et al. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19. [4] LANDETE JM. Dietary intake of natural antioxidants: vitamins and polyphenols. Crit Rev Food Sci Nutr. 2013;53(7):706-721. [5] LIU X, XU H, PENG H, et al. Advances in antioxidant nanozymes for biomedical applications. Coordin Chem Rev. 2024;502: 215610. [6] ABEDI N, SAJADI-JAVAN Z S, KOUHI M, et al. Antioxidant materials in oral and maxillofacial tissue regeneration: a narrative review of the literature. Antioxidants (Basel). 2023; 12(3):594. [7] SUI L, WANG J, XIAO Z, et al. ROS-scavenging nanomaterials to treat periodontitis. Front Chem. 2020;8:595530. [8] KUMAR H, BHARDWAJ K, NEPOVIMOVA E, et al. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials (Basel). 2020;10(7):1334. [9] KESARWALA AH, KRISHNA MC, MITCHELL JB. Oxidative stress in oral diseases. Oral Dis. 2016;22(1):9-18. [10] MEYLE J, CHAPPLE IJP. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000. 2015;69(1):7-17. [11] 王雨,刘佳.氧化应激与口腔炎性疾病的相关性综述[J].现代口腔医学杂志, 2024,38(1):66-69. [12] 郑燕丹,黄翔.活性氧在牙周炎中病理作用的研究进展[J].安徽医药,2019,23(7): 1295-1298. [13] CEKICI A, KANTARCI A, HASTURK H, et al. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000. 2014;64(1):57-80. [14] CANAKCI C, CICEK Y, CANAKCI VJB. Reactive oxygen species and human inflammatory periodontal diseases. Biochemistry (Mosc). 2005;70(6):619-628. [15] NATHAN C, CUNNINGHAM-BUSSEL A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13(5):349-361. [16] SCZEPANIK FSC, GROSSI ML, CASATI M, et al. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontol 2000. 2020;84(1):45-68. [17] FENTOĞLU Ö, KIRZIOĞLU F Y, BULUT MT, et al. Evaluation of lipid peroxidation and oxidative DNA damage in patients with periodontitis and hyperlipidemia. J Periodontol. 2015;86(5):682-688. [18] DE SOUSA NÉ YG, LIMA WF, MENDES PFS, et al. Dental caries and salivary oxidative stress: global scientific research landscape. Antioxidants (Basel). 2023;12(2):330. [19] SOUTHWARD K. The systemic theory of dental caries. Gen Dent. 2011;59(5): 367-373;quiz 374-5. [20] AGHA‐HOSSEINI F, MIRZAII‐DIZGAH I, FARMANBAR N, et al. Oxidative stress status and DNA damage in saliva of human subjects with oral lichen planus and oral squamous cell carcinoma. J Oral Pathol Med. 2012;41(10):736-740. [21] MATOUGH FA, BUDIN SB, HAMID ZA, et al. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):5-18. [22] ŻUKOWSKI P, MACIEJCZYK M, WASZKIEL D. Sources of free radicals and oxidative stress in the oral cavity. Arch Oral Biol. 2018;92:8-17. [23] SCHIEBER M, CHANDEL NAVDEEP S. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453-R462. [24] SIES H, BELOUSOV VV, CHANDEL NS, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23(7):499-515. [25] JOMOVA K, RAPTOVA R, ALOMAR SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-2574. [26] MATEEN S, MOIN S, KHAN AQ, et al. Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS One. 2016;11(4):e0152925. [27] HAJAM YA, RANI R, GANIE SY, et al. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells. 2022;11(3):552. [28] RATNAM DV, ANKOLA DD, BHARDWAJ V, et al. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J Control Release. 2006; 113(3):189-207. [29] KUMAR H, BHARDWAJ K, NEPOVIMOVA E, et al. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials (Basel). 2020;10(7):1334. [30] DAS M, DAS AC, PANDA S, et al. Clinical efficacy of grape seed extract as an adjuvant to scaling and root planing in treatment of periodontal pockets. J Biol Regul Homeost Agents. 2021;35:89-96. [31] BERRY AC, NAKSHABENDI R, ABIDALI H, et al. Adverse effects of grape seed extract supplement: a clinical case and long-term follow-up. J Diet Suppl. 2016;13(2):232-235. [32] BEHAL R, MALI AM, GILDA SS, et al. Evaluation of local drug-delivery system containing 2% whole turmeric gel used as an adjunct to scaling and root planing in chronic periodontitis: A clinical and microbiological study. J Indian Soc Periodontol. 2011;15(1):35-38. [33] KARTHIKEYAN A, SENTHIL N, MIN T. Nanocurcumin: a promising candidate for therapeutic applications. Front Pharmacol. 2020;11:487. [34] WASTI J, WASTI A, SINGH R. Efficacy of antioxidants therapy on progression of periodontal disease - A randomized control trial. Indian J Dent Res. 2021;32(2):187-191. [35] QU M, ZHOU Z, CHEN C, et al. Lycopene protects against trimethyltin-induced neurotoxicity in primary cultured rat hippocampal neurons by inhibiting the mitochondrial apoptotic pathway. Neurochem Int. 2011;59(8):1095-1103. [36] JAVADZADEH BOLOURI A, PAKFETRAT A, TONKABONI A, et al. Preventing and therapeutic effect of propolis in radiotherapy induced mucositis of head and neck cancers: a triple-blind, randomized, placebo-controlled trial. Iran J Cancer Prev. 2015;8(5):e4019. [37] SFORCIN JM, BANKOVA V. Propolis: is there a potential for the development of new drugs? J Ethnopharmacol. 2011;133(2): 253-260. [38] EL-HOUSSEINY AA, SALEH SM, EL-MASRY AA, et al. The effectiveness of vitamin “E” in the treatment of oral mucositis in children receiving chemotherapy. J Clin Pediatr Dent. 2007;31(3):167-170. [39] MAGGIO E, BOCCHINI VP, CARNEVALE R, et al. Vitamin E supplementation (alone or with other antioxidants) and stroke: a meta-analysis. Nutr Rev. 2024;82(8):1069-1078. [40] AHMADI A. Potential prevention: Aloe vera mouthwash may reduce radiation-induced oral mucositis in head and neck cancer patients. Chin J Integr Med. 2012;18(8):635-640. [41] FERREIRA M, TEIXEIRA M, SILVA E, et al. Allergic contact dermatitis to Aloe vera. Contact Dermatitis. 2007;57(4):278-279. [42] SAHLE FF, GULFAM M, LOWE TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today. 2018;23(5):992-1006. [43] ZHAN M, SUN H, WANG Z, et al. Nanoparticle-mediated multiple modulation of bone microenvironment To tackle osteoarthritis. ACS Nano. 2024; 18(15):10625-10641. [44] RASOOL N, NEGI D, SINGH Y. Thiol-functionalized, antioxidant, and osteogenic mesoporous silica nanoparticles for osteoporosis. ACS Biomater Sci Eng. 2023; 9(6):3535-3545. [45] SUN Y, MU S, XING Z, et al. Catalase-mimetic artificial biocatalysts with Ru catalytic centers for ROS elimination and stem-cell protection. Adv Mater. 2022; 34(46):e2206208. [46] ZHANG C, YAN R, BAI M, et al. Pt-clusters-equipped antioxidase-like biocatalysts as efficient ROS scavengers for treating periodontitis. Small. 2024;20(17):e2306966. [47] XU J, WU M, YANG J, et al. Multimodal smart systems reprogramme macrophages and remove urate to treat gouty arthritis. Nat Nanotechnol. 2024;19(10):1544-1557. [48] YANG W, YANG X, ZHU L, et al. Nanozymes: Activity origin, catalytic mechanism, and biological application. Coordin Chem Rev. 2021;448:214170. [49] ZHAO H, ZHANG R, YAN X, et al. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J Mater Chem B. 2021; 9(35):6939-6957. [50] XU D, WU L, YAO H, et al. Catalase-like nanozymes: Classification, catalytic mechanisms, and their applications. Small. 2022;18(37):2203400. [51] ATTAR F, SHAHPAR MG, RASTI B, et al. Nanozymes with intrinsic peroxidase-like activities. J Mol Liq. 2019;278:130-144. [52] DÍAZ A, LOEWEN PC, FITA I, et al. Thirty years of heme catalases structural biology. Arch Biochem Biophys. 2012;525(2): 102-110. [53] FUKAI T, USHIO-FUKAI M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583-1606. [54] WEAVER K, SKOUTA R. The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities. Biomedicines. 2022;10(4): 891. [55] COUTO N, WOOD J, BARBER J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med. 2016;95:27-42. [56] LU J, HOLMGREN A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75-87. [57] SHEN C, WANG Y. Recent progress on peroxidase modification and application. Appl Biochem Biotechnol. 2024;196(9): 5740-5764. [58] DOGGUI S, SAHNI JK, ARSENEAULT M, et al. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis. 2012;30(2):377-392. [59] GRIESSER M, PISTIS V, SUZUKI T, et al. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. J Biol Chem. 2011;286(2):1114-1124. [60] GUO Y, BASCHIERI A, MOLLICA F, et al. Hydrogen Atom Transfer from HOO. to ortho-Quinones Explains the Antioxidant Activity of Polydopamine. Angew Chem Int Ed Engl. 2021;60(28):15220-15224. [61] BEDLOVIČOVÁ Z, STRAPÁČ I, BALÁŽ M, et al. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules. 2020;25(14):3191. [62] SOULE BP, HYODO F, MATSUMOTO KI, et al. The chemistry and biology of nitroxide compounds. Free Radical Biology and Medicine. Free Radic Biol Med. 2007; 42(11):1632-1650. [63] LIN AMY, CHYI BY, WANG SD, et al. Carboxyfullerene prevents iron-induced oxidative stress in rat brain. J Neurochem. 1999;72(4):1634-1640. [64] HENDI SS, GOODARZI MT, MOGHIMBEIGI A, et al. Evaluation of the status of salivary antioxidants in dental caries. Infect Disord Drug Targets. 2020;20(6):816-821. [65] ALMUQRIN A, KAUR IP, WALSH LJ, et al. Amelioration strategies for silver diamine fluoride: moving from black to white. Antibiotics (Basel). 2023;12(2):298. [66] YAN W, MONTOYA C, ØILO M, et al. Contribution of root canal treatment to the fracture resistance of dentin. J Endod. 2019;45(2):189-193. [67] DISSANAYAKA WL, HARGREAVES KM, JIN L, et al. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015;21(3-4):550-563. [68] HAN Y, KOOHI-MOGHADAM M, CHEN Q, et al. HIF-1α stabilization boosts pulp regeneration by modulating cell metabolism. J Dent Res. 2022;101(10): 1214-1226. [69] ZHAO Y, SONG L, LI M, et al. Injectable CNPs/DMP1-loaded self-assembly hydrogel regulating inflammation of dental pulp stem cells for dentin regeneration. Materials Today Bio. 2023;24:100907. [70] ONUORA S. NETs implicated in periodontitis-associated bone loss. Nat Rev Rheumatol. 2023;19(8):463. [71] MATHUR A, MATHUR L, MANOHAR B, et al. Antioxidant therapy as monotherapy or as an adjunct to treatment of periodontal diseases. J Indian Soc Periodontol. 2013; 17(1):21-24. [72] HUANG H, PAN W, WANG Y, et al. Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis. Nat Commun. 2022;13(1): 5925. [73] XU Y, LUO Y, WENG Z, et al. Microenvironment-responsive metal-Phenolic nanozyme release platform with antibacterial, ROS scavenging, and osteogenesis for periodontitis. ACS Nano. 2023;17(19):18732-18746. [74] HUANG R, CHEN H, LIANG J, et al. Dual role of reactive oxygen species and their application in cancer therapy. J Cancer. 2021;12(18):5543-5561. [75] FAZLI B, IRANI S, BARDANIA H, et al. Prophylactic effect of topical (slow-release) and systemic curcumin nano-niosome antioxidant on oral cancer in rat. BMC Complement Med. 2022;22(1):109. [76] LUCKY SS, IDRIS NM, HUANG K, et al. In vivo biocompatibility, biodistribution and therapeutic efficiency of titania coated upconversion nanoparticles for photodynamic therapy of solid oral cancers. Theranostics. 2016;6(11):1844-1865. [77] ZHONG S, ZHANG Z, ZHAO Q, et al. Lattice expansion in ruthenium nanozymes improves catalytic activity and electro-responsiveness for boosting cancer therapy. Nat Commun. 2024;15(1):8097. [78] GLORIEUX C, LIU S, TRACHOOTHAM D, et al. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov. 2024; 23(8):583-606. [79] UPADHYAY RB, CARNELIO S, SHENOY RP, et al. Oxidative stress and antioxidant defense in oral lichen planus and oral lichenoid reaction. Scand J Clin Lab Invest. 2010;70(4):225-228. [80] SANKARI SL, BABU NA, RAJESH E, et al. Apoptosis in immune-mediated diseases. J Pharm Bioallied Sci. 2015;7:S200-202. [81] BAO J, CHEN C, YAN J, et al. Antioxidant therapy for patients with oral lichen planus: A systematic review and meta-analysis. Front Pharmacol. 2022;13:1030893. [82] ALIPOUR M, HABIBIVAND E, SEKHAVATI S, et al. Evaluation of therapeutic effects of nanofibrous mat containing mycophenolate mofetil on oral lichen planus: In vitro and clinical trial study. Biomater Investig Dent. 2023;10(1):2283177. [83] SOUNDARAJAN S, RAJASEKAR AJD, PROBLEMS M. Antibacterial and anti-inflammatory effects of a novel herb-mediated nanocomposite mouthwash in plaque-induced gingivitis: a randomized controlled trial. Dent Med Probl. 2023;60(3): 445-451. [84] CAI E, QI X, SHI Y, et al. Immunomodulatory melanin@Pt nanoparticle-reinforced adhesive hydrogels for healing diabetic oral ulcers. Chem Eng J. 2024;488:150372. [85] LING Z, GUO S, XIE H, et al. Synergistic effects of cerium-containing bioactive glasses and apoptotic extracellular vesicles alleviate bisphosphonate-related osteonecrosis of jaw. Appl Mater Today. 2024;38:102177. [86] KHAN F, OH D, CHANDIKA P, et al. Inhibitory activities of phloroglucinol-chitosan nanoparticles on mono- and dual-species biofilms of Candida albicans and bacteria. Colloids Surf B Biointerfaces. 2022;211:112307. [87] WANG Y, DING X, ZHANG F, et al. Ultrasmall Cu2I2 nanoclusters trigger metabolic-epigenetic reprogramming and endogenous antioxidant systems for alleviating osteoarthritis. Chem Eng J. 2024;497:154568. [88] MEDICI S, PEANA M, PELUCELLI A, et al. An updated overview on metal nanoparticles toxicity. Semin Cancer Biol. 2021;76:17-26. [89] HE X, FU P, AKER WG, et al. Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018;36(1):21-42. [90] EFTEKHARI A, DIZAJ SM, CHODARI L, et al. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother. 2018;103:1018-1027. [91] YAN L, ZHAO F, WANG J, et al. A safe-by-design strategy towards safer nanomaterials in nanomedicines. Adv Mater. 2019;31(45): 1805391. [92] YANG L, DONG S, GAI S, et al. Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes. Nanomicro Lett. 2023;16(1):28. [93] CHEN Z, CHU Z, JIANG Y, et al. Recent advances on nanomaterials for antibacterial treatment of oral diseases. Materials Today Bio. 2023;20:100635. [94] WANG Z, WU J, ZHENG JJ, et al. Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat Commun. 2021;12(1):6866. [95] KLEANDROVA VV, LUAN F, GONZÁLEZ-DÍAZ H, et al. Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environ Sci Technol. 2014;48(24):14686-14694. [96] SANCHEZ VC, PIETRUSKA JR, MISELIS NR, et al. Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):511-529. [97] LI J, GUAN M, WANG T, et al. Gd@C(82)-(ethylenediamine)(8) nanoparticle: A new high-efficiency water-soluble ROS scavenger. ACS Appl Mater Interfaces. 2016;8(39): 25770-25776. [98] LIU J, MA L, ZHANG G, et al. Recent progress of surface modified nanomaterials for scavenging reactive oxygen species in organism. Bioconjug Chem. 2021;32(11): 2269-2289. [99] JOHNSON KB, WEI WQ, WEERARATNE D, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2021;14(1):86-93. [100] ABEDI N, SAJADI-JAVAN ZS, KOUHI M, et al. Antioxidant materials in oral and maxillofacial tissue regeneration: A narrative review of the literature. Antioxidants (Basel). 2023;12(3):594. [101] BENZIAN H, WATT R, MAKINO Y, et al. WHO calls to end the global crisis of oral health. Lancet. 2022;400(10367): 1909-1910. [102] JAIN N, DUTT U, RADENKOV I, et al. WHO’s global oral health status report 2022: Actions, discussion and implementation. Oral Dis. 2024;30(2):73-79. [103] BELIBASAKIS GN, BOSTANCI N, MARSH PD, et al. Applications of the oral microbiome in personalized dentistry. Arch Oral Biol. 2019;104:7-12. |
[1] | 高艳果, 郭 旭, 李晓晗, 陈仕琦, 朱海涛, 黄良永, 叶 方, 卢 伟, 王启斌, 郑 涛, 陈 黎. 糖尿病皮肤创面模型小鼠正交实验优选“红黄白”凝胶的处方配比[J]. 中国组织工程研究, 2026, 30(8): 1921-1928. |
[2] | 刘宏杰, 牟秋菊, 申玉雪, 梁 飞, 祝丽丽. 金属有机框架/羧甲基壳聚糖-氧化海藻酸钠/富血小板血浆水凝胶促糖尿病感染创面愈合[J]. 中国组织工程研究, 2026, 30(8): 1929-1939. |
[3] | 闵昌琴, 黄 英. pH值/近红外激光刺激响应型载药系统的构建及在抗口腔鳞癌中的应用[J]. 中国组织工程研究, 2026, 30(8): 1940-1951. |
[4] | 邵子瑜, 李 倩, 曲曼姑丽·阿布都克力木, 韩友军, 胡 杨. 三种比例双相磷酸钙的制备及性能表征[J]. 中国组织工程研究, 2026, 30(8): 1952-1961. |
[5] | 郑旭颖, 胡洪成, 许礼兵, 韩建民, 邸 萍. 不同载荷形式和内连接形状下两段式粘接固位氧化锆种植体的应力大小和分布[J]. 中国组织工程研究, 2026, 30(8): 1979-1987. |
[6] | 周红丽, 王晓龙, 郭 蕊, 姚轩轩, 郭 茹, 周熊涛, 何祥一. 纳米羟基磷灰石/海藻酸钠/聚己内酯/阿仑膦酸钠支架的制备及表征[J]. 中国组织工程研究, 2026, 30(8): 1962-1970. |
[7] | 杨利霞, 刁立琴, 李 华, 冯亚婵, 刘 鑫, 于月欣, 窦茜茜, 谷辉峰, 徐兰举. 重组Ⅲ型人源化胶原蛋白改善大鼠光老化皮肤的调控机制[J]. 中国组织工程研究, 2026, 30(8): 1988-2000. |
[8] | 董春阳, 周天恩, 莫孟学, 吕文权, 高 明, 朱瑞凯, 高志伟. 二甲双胍联合血水草敷料治疗深Ⅱ度烧伤创面的作用机制[J]. 中国组织工程研究, 2026, 30(8): 2001-2013. |
[9] | 潘之怡, 黄嘉雯, 薛文君, 徐建达. MXene柔性电子传感器的优势及在糖尿病足创面监测中的应用[J]. 中国组织工程研究, 2026, 30(8): 2023-2032. |
[10] | 王奇飒, 卢雨征, 韩秀峰, 赵文玲, 石海涛, 徐 哲. 3D打印甲基丙烯酰化透明质酸/脱细胞皮肤水凝胶支架的细胞相容性[J]. 中国组织工程研究, 2026, 30(8): 1912-1920. |
[11] | 王菘芃, 刘玉三, 于焕英, 高晓丽, 徐英江, 张晓明, 刘 敏. 沸石基咪唑盐框架8纳米材料的活性氧双向调控:从肿瘤治疗、抗菌到细胞保护[J]. 中国组织工程研究, 2026, 30(8): 2033-2013. |
[12] | 孙 蕾, 张 琦, 张 宇. 绿原酸蛋白微球/聚己内酯静电纺丝膜的促成骨效应[J]. 中国组织工程研究, 2026, 30(8): 1877-1884. |
[13] | 吴妍廷, 李 宇, 廖金凤. 氧化镁纳米粒调控成骨与血管生成相关基因表达促进骨缺损愈合[J]. 中国组织工程研究, 2026, 30(8): 1885-1895. |
[14] | 黎清斌, 林建辉, 黄文杰, 王明爽, 杜间开, 劳永锵. 膝关节周围骨巨细胞瘤病灶扩大刮除后填充骨水泥:软骨下植骨与不植骨的比较[J]. 中国组织工程研究, 2026, 30(8): 1896-1902. |
[15] | 蒋星海, 宋玉林, 李德津, 邵建敏, 徐军志, 刘华凯, 吴应国, 沈岳辉, 冯思诚. 血管内皮生长因子165基因转染骨髓间充质干细胞构建血管化两亲性肽凝胶模块[J]. 中国组织工程研究, 2026, 30(8): 1903-1911. |
龋齿、牙髓炎、牙周炎和口腔癌等口腔疾病发病与氧化应激关系密切,临床研究表明抗氧化治疗辅助传统的治疗能更有助于疾病愈合。相较于天然抗氧化物,抗氧化纳米材料稳定性好,清除效率高,具有广阔的医学应用前景。然而现有研究大多聚焦于抗氧化纳米材料在全身疾病中的应用,尤其是肿瘤和心脑血管疾病,关于口腔疾病的描述较少。因此,该文总结了近十几年抗氧化纳米材料在口腔各类疾病中的研究应用,分析了其临床转化所面临的问题,并根据研究现状和临床应用要求,提出了未来口腔抗氧化纳米材料的研究方向,为实现抗氧化纳米材料的临床转化提供了新思路。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||