[1] SALHOTRA A, SHAH HN, LEVI B, et al. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11): 696-711.
[2] MANOOCHEHRI H, GHORBANI M, MOOSAZADEH MOGHADDAM M, et al. Strontium doped bioglass incorporated hydrogel-based scaffold for amplified bone tissue regeneration. Sci Rep. 2022; 12(1):10160.
[3] EL-GAZZAR A, VORABERGER B, RAUCH F, et al. Bi-allelic mutation in SEC16B alters collagen trafficking and increases ER stress. EMBO Mol Med. 2023;15(4):e16834.
[4] LYONS JG, PLANTZ MA, HSU WK, et al. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol. 2020;8:922.
[5] YU L, WEI M. Biomineralization of Collagen-Based Materials for Hard Tissue Repair. Int J Mol Sci. 2021;22(2):944.
[6] ZHANG C, YAN B, CUI Z, et al. Bone regeneration in minipigs by intrafibrillarly-mineralized collagen loaded with autologous periodontal ligament stem cells. Sci Rep. 2017;7(1):10519.
[7] 马士卿,王晓婧.仿生矿化胶原材料应用于引导骨再生术的研究进展[J].重庆医学,2023,52(7):1072-1077.
[8] MENG C, LIU K, LV Z, et al. Inflammation and immunity gene expression profiling of macrophages on mineralized collagen. J Biomed Mater Res A. 2021;109(8):
1328-1336.
[9] KUCKO SK, RAEMAN SM, KEENAN TJ. Current advances in hydroxyapatite-and β-tricalcium phosphate-based composites for biomedical applications: a review. Biomedical Materials Devices. 2023;1(1): 49-65.
[10] LIAN K, LU H, GUO X, et al. The mineralized collagen for the reconstruction of intra-articular calcaneal fractures with trabecular defects. Biomatter. 2013;3(4):e27250.
[11] LEE D, WUFUER M, KIM I, et al. Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci Rep. 2021;11(1):746.
[12] LIU K, MENG CX, LV ZY, et al. Enhancement of BMP-2 and VEGF carried by mineralized collagen for mandibular bone regeneration. Regen Biomater. 2020;7(4):435-440.
[13] ZHU X, WANG C, BAI H, et al. Functionalization of biomimetic mineralized collagen for bone tissue engineering. Mater Today Bio. 2023;20:100660.
[14] COELHO CC, SOUSA SR, MONTEIRO FJ. Heparinized nanohydroxyapatite/collagen granules for controlled release of vancomycin. J Biomed Mater Res A. 2015; 103(10):3128-3138.
[15] MURPHY CM, SCHINDELER A, GLEESON JP, et al. A collagen-hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Acta Biomater. 2014;10(5):2250-2258.
[16] ZHANG X, GUO WG, CUI H, et al. In vitro and in vivo enhancement of osteogenic capacity in a synthetic BMP-2 derived peptide-coated mineralized collagen composite. J Tissue Eng Regen Med. 2016;10(2): 99-107.
[17] QUADE M, KNAACK S, WEBER D, et al. Heparin modification of a biomimetic bone matrix modulates osteogenic and angiogenic cell response in vitro. Eur Cell Mater. 2017;33:105-120.
[18] ZWINGENBERGER S, LANGANKE R, VATER C, et al. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model. J Biomed Mater Res A. 2016;104(9):2126-2134.
[19] KNAACK S, LODE A, HOYER B, et al. Heparin modification of a biomimetic bone matrix for controlled release of VEGF. J Biomed Mater Res A. 2014;102(10):3500-3511.
[20] RATANAVARAPORN J, FURUYA H, KOHARA H, et al. Synergistic effects of the dual release of stromal cell-derived factor-1 and bone morphogenetic protein-2 from hydrogels on bone regeneration. Biomaterials. 2011; 32(11):2797-2811.
[21] EPSTEIN NE. Pros, cons, and costs of INFUSE in spinal surgery. Surg Neurol Int. 2011;2:10.
[22] QUADE M, MÜNCH P, LODE A, et al. The Secretome of Hypoxia Conditioned hMSC Loaded in a Central Depot Induces Chemotaxis and Angiogenesis in a Biomimetic Mineralized Collagen Bone Replacement Material. Adv Healthc Mater. 2020;9(2):e1901426.
[23] LIN Q, LIM JYC, XUE K, et al. Polymeric hydrogels as a vitreous replacement strategy in the eye. Biomaterials. 2021;268:120547.
[24] QUINLAN E, LÓPEZ-NORIEGA A, THOMPSON E, et al. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J Control Release. 2015; 198:71-79.
[25] QUINLAN E, LÓPEZ-NORIEGA A, THOMPSON EM, et al. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. J Tissue Eng Regen Med. 2017;11(4):1097-1109.
[26] QUINLAN E, THOMPSON EM, MATSIKO A,
et al. Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration. J Control Release. 2015;207:112-119.
[27] SUCHÝ T, ŠUPOVÁ M, KLAPKOVÁ E, et al. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure. Eur J Pharm Sci. 2017;100:219-229.
[28] QUADE M, SCHUMACHER M, BERNHARDT A, et al. Strontium-modification of porous scaffolds from mineralized collagen for potential use in bone defect therapy. Mater Sci Eng C Mater Biol Appl. 2018;84: 159-167.
[29] QUADE M, VATER C, SCHLOOTZ S,et al. Strontium enhances BMP-2 mediated bone regeneration in a femoral murine bone defect model. J Biomed Mater Res B Appl Biomater. 2020;108(1):174-182.
[30] TANG ZB, CAO JK, WEN N, et al. Posterolateral spinal fusion with nano-hydroxyapatite-collagen/PLA composite and autologous adipose-derived mesenchymal stem cells in a rabbit model. J Tissue Eng Regen Med. 2012;6(4): 325-336.
[31] KIM SY, BAE EB, HUH JW, et al. Bone Regeneration Using a Three-Dimensional Hexahedron Channeled BCP Block Combined with Bone Morphogenic Protein-2 in Rat Calvarial Defects. Materials (Basel). 2019; 12(15):2435.
[32] CHAO YL, WANG TM, CHANG HH, et al. Effects of low-dose rhBMP-2 on peri-implant ridge augmentation in a canine model. J Clin Periodontol. 2021;48(5): 734-744.
[33] MA X, HE Z, HAN F, et al. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf B Biointerfaces. 2016;143:81-87.
[34] QUINLAN E, THOMPSON EM, MATSIKO A, et al. Functionalization of a Collagen-Hydroxyapatite Scaffold with Osteostatin to Facilitate Enhanced Bone Regeneration. Adv Healthc Mater. 2015;4(17):2649-2656.
[35] PENG S, LIU XS, HUANG S, et al. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Bone. 2011;49(6):1290-1298.
[36] BAKKER AD, ZANDIEH-DOULABI B, KLEIN-NULEND J. Strontium ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts. Bone. 2013;53(1):112-119..
[37] HANG Z, BING L, HJ A, et al. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. J Magnesium Alloys. 2021;9(3):779-804.
[38] SARTORI M, PAGANI S, FERRARI A, et al. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):101-111.
[39] POPA CL, BARTHA CM, ALBU M, et al. Synthesis, Characterization and cytotoxicity evaluation on zinc doped hydroxyapatite in collagen matrix. Digest J Nanomaterials Biostructures. 2015;10(2):681-691.
[40] TIAN Y, CAO H, QIAO Y, et al. Antimicrobial and osteogenic properties of iron-doped titanium. Rsc Advances. 2016;6(52):46495-46507.
[41] CARTON F, MALATESTA M. Nanotechnological Research for Regenerative Medicine: The Role of Hyaluronic Acid. Int J Mol Sci. 2024;25(7): 3975.
[42] LU J, GUAN F, CUI F, et al. Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats. Regen Biomater. 2019;6(6):325-334.
[43] DOU DD, ZHOU G, LIU HW, et al. Sequential releasing of VEGF and BMP-2 in hydroxyapatite collagen scaffolds for bone tissue engineering: Design and characterization. Int J Biol Macromol. 2019;123:622-628.
[44] GABRIELYAN A, NEUMANN E, GELINSKY M, et al. Metabolically conditioned media derived from bone marrow stromal cells or human skin fibroblasts act as effective chemoattractants for mesenchymal stem cells. Stem Cell Res Ther. 2017;8(1):212.
[45] SONG Y, WU H, GAO Y, et al. Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes. ACS Appl Mater Interfaces. 2020;12(14):16058-16075.
[46] LI M, JIA W, ZHANG X, et al. Hyaluronic acid oligosaccharides modified mineralized collagen and chitosan with enhanced osteoinductive properties for bone tissue engineering. Carbohydr Polym. 2021;260: 117780.
[47] SUN Y, LIU S, FU Y, et al. Mineralized Collagen Regulates Macrophage Polarization During Bone Regeneration. J Biomed Nanotechnol. 2016;12(11): 2029-2040.
[48] MARIANI E, LISIGNOLI G, BORZÌ RM, et al. Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci. 2019; 20(3):636.
[49] ZHOU G, GROTH T. Host Responses to Biomaterials and Anti-Inflammatory Design-a Brief Review. Macromol Biosci. 2018;18(8):e1800112.
[50] LI J, ZHANG YJ, LV ZY, et al. The observed difference of macrophage phenotype on different surface roughness of mineralized collagen. Regen Biomater. 2020;7(2):203-211.
[51] MULAZZI M, CAMPODONI E, BASSI G, et al. Medicated Hydroxyapatite/Collagen Hybrid Scaffolds for Bone Regeneration and Local Antimicrobial Therapy to Prevent Bone Infections. Pharmaceutics. 2021;13(7):1090.
[52] SUCHÝ T, ŠUPOVÁ M, KLAPKOVÁ E, et al. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers. J Pharm Sci. 2016; 105(3):1288-1294.
[53] SUCHÝ T, ŠUPOVÁ M, SAUEROVÁ P, et al. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: Comparison of release kinetics, antimicrobial activity and cytocompatibility. Eur J Pharm Biopharm. 2019;140:50-59.
[54] OSHIMA S, SATO T, HONDA M, et al. Fabrication of Gentamicin-Loaded Hydroxyapatite/Collagen Bone-Like Nanocomposite for Anti-Infection Bone Void Fillers. Int J Mol Sci. 2020;21(2):551.
[55] EGAWA S, HIRAI K, MATSUMOTO R, et al. Efficacy of Antibiotic-Loaded Hydroxyapatite/Collagen Composites Is Dependent on Adsorbability for Treating Staphylococcus aureus Osteomyelitis in Rats. J Orthop Res. 2020;38(4):843-851.
[56] SOCRATES R, SAKTHIVEL N, RAJARAM A, et al. Novel fibrillar collagen–hydroxyapatite matrices loaded with silver nanoparticles for orthopedic application. Materials Letters. 2015;161:759-762.
[57] PREDOI D, ICONARU SL, ALBU M, et al. Physicochemical and antimicrobial properties of silver-doped hydroxyapatite collagen biocomposite. Polymer Eng Sci. 2017;57(6):537-545. |