[1] EL-RASHIDY AA, ROETHER JA, HARHAUS L,
et al. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1-28.
[2] SALHOTRA A, SHAH HN, LEVI B, et al. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11): 696-711.
[3] WEI J, CHEN X, XU Y, et al. Significance and considerations of establishing standardized critical values for critical size defects in animal models of bone tissue regeneration. Heliyon. 2024;10(13):e33768.
[4] ORYAN A, ALIDADI S, MOSHIRI A, et al. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18.
[5] HOLMES D. Non-union bone fracture: a quicker fix. Nature. 2017;550(7677):S193.
[6] DIMITRIOU R, JONES E, MCGONAGLE D, et al.
Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.
[7] AHLMANN E, PATZAKIS M, ROIDIS N, et al. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84(5):716-720.
[8] ST JOHN TA, VACCARO AR, SAH AP, et al. Physical and monetary costs associated with autogenous bone graft harvesting. Am J Orthop. 2003;32(1):18-23.
[9] YOUNGER EM, CHAPMAN MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3(3):192-195.
[10] FERNANDEZ DE GRADO G, KELLER L, IDOUX-GILLET Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018; 9:2041731418776819.
[11] ZHAO Y, CAO G, WANG Z, et al. The recent progress of bone regeneration materials containing EGCG. J Mater Chem B. 2024; 12(39):9835-9844.
[12] ELGALI I, OMAR O, DAHLIN C, et al. Guided bone regeneration: materials and biological mechanisms revisitedEuropean. Eur J Oral Sci. 2017;125(5):315-337.
[13] EINHORN TA, GERSTENFELD LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45-54.
[14] 历龙飞,张朝旭,张馨丹,等.先进材料在骨缺损修复中的应用研究进展[J].中华骨与关节外科杂志,2022,15(1):63-69.
[15] MOU J, CUI Y, KURCZ K, et al. Bibliometric and visualized analysis of research on major e-commerce journals using Citespace. JECR. 2019;20(4):219-237.
[16] MAYR P, SCHARNHORST A. Scientometrics and information retrieval: weak-links revitalized. Scientometrics. 2014;102:2193-2199.
[17] CHEN C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci. 2006;57(3):359-377.
[18] VAN ECK NJ, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-538.
[19] DING X, YANG Z. Knowledge mapping of platform research: a visual analysis using VOSviewer and CiteSpace. Electron Commer Res. 2020;22(4):787-809.
[20] NAYAK TR, ANDERSEN H, MAKAM VS, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011; 5(6):4670-4678.
[21] DEVILLE S, SAIZ E, TOMSIA AP, et al. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006; 27(32):5480-5489.
[22] INZANA JA, OLVERA D, FULLER SM, et al.
3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014; 35(13):4026-4034.
[23] THEIN-HAN WW, MISRA RD. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5(4):1182-1197.
[24] SEITZ H, RIEDER W, IRSEN S, et al. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005; 74(2):782-788.
[25] KRAUS T, FISCHERAUER SF, HÄNZI AC, et al. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 2012;8(3):1230-1238.
[26] HENDRICKS MP, SATO K, PALMER LC, et al.
Supramolecular Assembly of Peptide Amphiphiles. Acc Chem Res. 2017;50(10): 2440-2448.
[27] HUEBSCH N, LIPPENS E, LEE K, et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater. 2015;14(12):1269-1277.
[28] CHEN ST, BUSER D. Clinical and esthetic outcomes of implants placed in postextraction sites. Int J Oral Maxillofac Implants. 2009;24 Suppl:186-217.
[29] CHEN ST, BUSER D. Esthetic outcomes following immediate and early implant placement in the anterior maxilla-a systematic review. Int J Oral Maxillofac Implants. 2014;29 Suppl:186-215.
[30] URBAN IA, JOVANOVIC SA, LOZADA JL. Vertical ridge augmentation using guided bone regeneration (GBR) in three clinical scenarios prior to implant placement: a retrospective study of 35 patients 12 to 72 months after loading. Int J Oral Maxillofac Implants. 2009;24(3):502-510.
[31] WANG Y, ZHANG H, HU Y, et al. Bone repair biomaterials: a perspective from immunomodulation. Adv Funct Mater. 2022;32(51):2208639.
[32] 王子瑞,朱金亮,何志敏,等.人工合成骨修复材料的临床应用及展望[J].生物骨科材料与临床研究,2021,18(4):8-17.
[33] KOLK A, HANDSCHEL J, DRESCHER W, et al.
Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40(8):706-718.
[34] ŽIVADINOVIĆ M, ANDRIĆ M, MILOŠEVIĆ V, et al. Histomorphometric evaluation of bone regeneration using autogenous bone and beta-tricalcium phosphate in diabetic rabbits. Vojnosanit Pregl. 2016;73(12): 1132-1138.
[35] XU S, LIN K, WANG Z, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588-2596.
[36] LI M, MA H, HAN F, et al. Microbially catalyzed biomaterials for bone regeneration. Adv Mater. 2021;33(49): e2104829.
[37] YANG Z, XUE J, SHI Z, et al. Naturally derived flexible bioceramics: Biomass recycling approach and advanced function. Matter. 2024;7(3):1275-1291.
[38] GAO C, DENG Y, FENG P, et al. Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int J Mol Sci. 2014;15(3):4714-4732.
[39] 陈旭卓,周知航,郑吉驷,等.3D生物打印技术在口腔颌面部骨组织缺损修复的研究进展[J].中国口腔颌面外科杂志, 2018,16(3):279-283.
[40] PATI F, SONG TH, RIJAL G, et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 2015;37:230-241.
[41] IVANOVSKI S, BREIK O, CARLUCCIO D,
et al. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000. 2023;93(1):358-384.
[42] 张孝利.GelMA水凝胶在骨组织工程中的研究进展[J].复旦学报(医学版), 2021,48(6):847-851.
[43] BEKTAS C, MAO Y. Hydrogel Microparticles for Bone Regeneration. Gels. 2023;10(1):28.
[44] HUEBSCH N, LIPPENS E, LEE K, et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater. 2015;14(12): 1269-1277.
[45] COSTA-PINTO AR, REIS RL, NEVES NM. Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev. 2011;17(5):331-347.
[46] SARAVANAN S, CHAWLA A, VAIRAMANI M,
et al. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol. 2017;104(Pt B):1975-1985.
[47] THORWARTH M, SCHULTZE-MOSGAU S, KESSLER P, et al. Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg. 2005;63(11):1626-1633.
[48] BHAT S, UTHAPPA UT, ALTALHI T, et al. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater Sci Eng. 2022;8(10):4039-4076.
[49] 莉魏,保金马,邵金龙,等.羟基磷灰石复合材料在骨组织工程中应用的研究进展[J].四川大学学报(医学版),2021, 52(3):357.
[50] LI Y, FU Y, ZHANG H, et al. Natural Plant Tissue with Bioinspired Nano Amyloid and Hydroxyapatite as Green Scaffolds for Bone Regeneration. Adv Healthc Mater. 2022; 11(12):e2102807.
[51] DHIVYA S, SARAVANAN S, SASTRY TP, et al. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnology. 2015;13:40. |