[1] RAJPTU R, NARKHEDE J, NAIK J. Nanogels as nanocarriers for drug delivery: A review.ADMET DMPK. 2020;8(1):1-15.
[2] HO TC, CHANG CC, CHAN HP, et al. Hydrogels: Properties and Applications in Biomedicine. Molecules. 2022;27(9):2902.
[3] CHEN C, LI D, YANO H, et al. Bioinspired hydrogels: Quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation. Carbohydr Polym. 2019;207:411-417.
[4] FOUDAZI R, ZOWADA R, MANAS-ZLOCZOWER I, et al. Porous Hydrogels: Present Challenges and Future Opportunities. Langmuir. 2023;39(6): 2092-2111.
[5] FISHER DG, PRICE RJ. Recent Advances in the Use of Focused Ultrasound for Magnetic Resonance Image-Guided Therapeutic Nanoparticle Delivery to the Central Nervous System. Front Pharmacol. 2019;10:01348.
[6] PINELLI F, PERALE G, ROSSI F. Coating and Functionalization Strategies for Nanogels and Nanoparticles for Selective Drug Delivery. Gels. 2020;6(1):6.
[7] YIN Y, HU B, YUAN X, et al. Nanogel: A Versatile Nano-Delivery System for Biomedical Applications. Pharmaceutics. 2020;12(3):290.
[8] 段秀红,马华,尚宏周,等.智能水凝胶在生物医药领域的应用进展[J].中国医院药学杂志,2024,16(44):1950-1959.
[9] 宋昌隆,付翔,唐璐,等.抗溶胀水凝胶在生物医学领域的研究进展[J].生物医学工程学杂志,2024,4(41):848-853.
[10] SHAH S, RANGARAJ N, LAXMIKESHAV K,
et al. Nanogels as drug carriers - Introduction, chemical aspects, release mechanisms and potential applications. Int J Pharm. 2020;581:119268.
[11] ZHOU W, YANG G, NI X, et al. Recent Advances in Crosslinked Nanogel for Multimodal Imaging and Cancer Therapy. Polymers. 2020;12(9):1902.
[12] LIMA CSA, BALOGH TS, VARCA JPRO, et al. An Updated Review of Macro, Micro, and Nanostructured Hydrogels for Biomedical and Pharmaceutical Applications. Pharmaceutics. 2020;12(10):970.
[13] 赵子沛,王旭,赵伟锋,等.金属有机框架基水凝胶复合材料修复软硬组织损伤的潜力和优势[J]. 中国组织工程研究, 2023,28(22):3583-3590.
[14] 杨宁文,何星,唐寅.智能水凝胶在生物医学领域的研究进展[J].化学通报,2023, 86(10):1226-1233.
[15] 田林灵,郭海瑞,杜晓明,等.纳米复合水凝胶在骨关节炎治疗中的优势与特征[J].中国组织工程研究,2024,28(15): 2410-2415.
[16] 张攀,吕福杰,范治平,等.刺激响应性水凝胶在肿瘤治疗中的研究进展[J].高分子通报,2023,36(5):551-563.
[17] AKIYOSHI K, KOBAYASHI S, SHICHIBE S, et al.
Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release. 1998;54(3):313-320.
[18] VINOGRADOV SV, BRONICH TK, KABANOV AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev. 2002;54(1):135-147.
[19] CHEN H, ZHANG J, QIAN Z, et al. In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel. Nanotechnology. 2008;19(18):185707.
[20] ZHANG J, CHEN H, XU L, et al. The targeted behavior of thermally responsive nanohydrogel evaluated by NIR system in mouse model. J Control Release. 2008; 131(1):34-40.
[21] CHIANG WH, HO VT, CHEN HH, et al. Superparamagnetic Hollow Hybrid Nanogels as a Potential Guidable Vehicle System of Stimuli-Mediated MR Imaging and Multiple Cancer Therapeutics. Langmuir. 2013;29(21):6434-6443.
[22] HUPPERTSBERG A, KAPS L, ZHONG Z, et al.
Squaric Ester-Based, pH-Degradable Nanogels: Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators. J Am Chem Soc. 2021;143(26):9872-9883.
[23] LIANG S, XIAO L, ChEN T, et al. Injectable Nanocomposite Hydrogels Improve Intraperitoneal Co-delivery of Chemotherapeutics and Immune Checkpoint Inhibitors for Enhanced Peritoneal Metastasis Therapy. ACS Nano. 2024;18(29):18963-18979.
[24] LIU C, LEI F, LI P, et al. Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture. Carbohydr Polym. 2020;236: 116100.
[25] SHAHBAZI MA, HAMIDI M. The impact of preparation parameters on typical attributes of chitosan-heparin nanohydrogels: particle size, loading efficiency, and drug release. Drug Dev Ind Pharm. 2013;39(11): 1774-1782.
[26] 杨海鹏,张幼维,赵炯心.P(MAA-co-AM)纳米水凝胶的制备与表征[J].功能高分子学报,2018,31(5):486-492.
[27] 周忠旭,李雪婷,鲁希华.纳米水凝胶的制备及相变行为研究[J].应用化工,2023, 52(9):2524-2529.
[28] 袁成,盛海亮,冯松,等.纳米金复合水凝胶的制备及其应用研究进展[J].中国科学:化学,2021,51(12):1563-1578.
[29] CAO H, DUAN L, ZHANG Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1):426.
[30] WANG J, BRUGNOLI B, FOGLIETTA F, et al. Tuning stiffness of hyaluronan-cholesterol nanogels by mussel-inspired dopamine-Fe3+ coordination: Preparation and properties evaluation. Int J Biol Macromol. 2024;280:135553.
[31] RIBOVSKI L, DE JONG E, MERGEL O, et al.
Low nanogel stiffness favors nanogel transcytosis across an in vitro blood–brain barrier. Nanomedicine. 2021;34:102377.
[32] KIM U J, PARK J, LI C, et al. Structure and Properties of Silk Hydrogels. Biomacromolecules. 2004;5(3):786-792.
[33] CHELLATHURAI MS, CHUNG LY, HILLES AR, et al. Pharmaceutical chitosan hydrogels: A review on its design and applications. Int J Biol Macromol. 2024;280:135775.
[34] SCHULTE MF, BOCHENEK S, BRUGNONI M,
et al. Stiffness Tomography of Ultra-Soft Nanogels by Atomic Force Microscopy. Angew Chem Int Ed Engl. 2021;60(5): 2280-2287.
[35] WANG QS, GAO LN, ZHU XN, et al.
Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma. Theranostics. 2019;9(21): 6239-6255.
[36] LIU C, LEI F, LI P, et al. Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture. Carbohydr Polym. 2020;236: 116100.
[37] KOPEČEK J. Polymer chemistry: swell gels. Nature. 2002;417(6887):389-391.
[38] SONI KS, DESALE SS, BRONICH TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release. 2016;240:109-126.
[39] BOZOĞLAN BK, DUMAN O, TUNÇ S.
Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels. Int J Biol Macromol. 2020;162:781-797.
[40] RATAKONDA S, SRIDHAR UM, Rhinehart RR,
et al. Assessing viscoelastic properties of chitosan scaffolds and validation with cyclical tests. Acta Biomater. 2012;8(4): 1566-1575.
[41] CHARBONIER F, INDANA D, CHAUDHURI O. Tuning Viscoelasticity in Alginate Hydrogels for 3D Cell Culture Studies. Current Protocols. 2021;1(5):e124.
[42] JANNATAMANI H, MOTAMEDZADEGAN A, FARSI M, et al. Rheological properties of wood/bacterial cellulose and chitin nano-hydrogels as a function of concentration and their nano-films properties. IET Nanobiotechnol. 2022;16(4):158-169.
[43] WEI Z, SCHNELLMANN R, GERECHT S. Hydrogel Network Dynamics Regulate Vascular Morphogenesis. Cell Stem Cell. 2020;27(5):798-812.
[44] VUNJAK-NOVAKOVIC G. Dynamic Hydrogels for Investigating Vascularization. Cell Stem Cell. 2020;27(5):697-698.
[45] LEE H pyo, GU L, MOONEY DJ, et al. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat Mater. 2017;16(12):1243-1251.
[46] WISDOM K M, ADEBOWALE K, CHANG J,
et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat Commun. 2018; 9(1):4144.
[47] OVIJIT C, JUSTIN CW, PAUL AJ, et al.
Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020; 584(7822):535-546.
[48] DUPONT S, MORSUT L, ARAGONA M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179-183.
[49] FISCHER M, RIKEIT P, KNAUS P, et al. YAP-Mediated Mechanotransduction in Skeletal Muscle. Front Physiol. 2016;7:41.
[50] ZHOU W, YANG G, NI X, et al. Recent Advances in Crosslinked Nanogel for Multimodal Imaging and Cancer Therapy. Polymers. 2020;12(9):1902.
[51] SHIPWAY AN, WILLNER I. Nanoparticles as structural and functional units in surface-confined architectures. Chem Commun (Camb). 2001;(20):2035-2045.
[52] QIAN Q, SHI L, GAO X, et al. A Paclitaxel‐Based Mucoadhesive Nanogel with Multivalent Interactions for Cervical Cancer Therapy. Small. 2019;15(47):e1903208.
[53] ZHANG Q, WU J, WANG J, et al. A Neutrophil‐Inspired Supramolecular Nanogel for Magnetocaloric–Enzymatic Tandem Therapy. Angew Chem Int Ed Engl. 2020;59(9):3732-3738.
[54] DING F, MOU Q, MA Y, et al. A Crosslinked Nucleic Acid Nanogel for Effective siRNA Delivery and Antitumor Therapy. Angew Chem Int Ed Engl. 2018;57(12):3064-3068.
[55] QIAN H, WANG X, YUAN K, et al. Delivery of doxorubicin in vitro and in vivo using bio-reductive cellulose nanogels. Biomater. Sci. 2014;2(2):220-232.
[56] TARIQ L, ARAFAH A, ALI S, et al. Nanogel-based Transdermal Drug Delivery System: A Therapeutic Strategy with Under Discussed Potential. Curr Top Med Chem. 2023;23(1): 44-61.
[57] MOLINA M, ASADIAN-BIRJAND M, BALACH J, et al. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev. 2015; 44(17):6161-6186.
[58] WANG H, PICCHIO ML, CALDERÓN M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(4): e1791.
[59] YIN Y, HU B, YUAN X, et al. Nanogel: A Versatile Nano-Delivery System for Biomedical Applications. Pharmaceutics. 2020;12(3):290.
[60] CAO Y, MAO Z, HE Y, et al. Extremely Small Iron Oxide Nanoparticle-Encapsulated Nanogels as a Glutathione-Responsive T 1 Contrast Agent for Tumor-Targeted Magnetic Resonance Imaging. ACS Appl Mater Interfaces. 2020;12(24):
26973-26981.
[61] LI L, GAO Y, ZHANG Y, et al. A Biomimetic Nanogel System Restores Macrophage Phagocytosis for Magnetic Resonance Imaging‐Guided Synergistic Chemoimmunotherapy of Breast Cancer. Adv Healthc Mater. 2023;12(26):e2300967.
[62] PENG Y, GAO Y, YANG C, et al. Low-Molecular-Weight Poly(ethylenimine) Nanogels Loaded with Ultrasmall Iron Oxide Nanoparticles for T 1 -Weighted MR Imaging-Guided Gene Therapy of Sarcoma. ACS Appl Mater Interfaces. 2021; 13(24):27806-27813.
[63] PREMAN NK, JAIN S, JOHNSON RP. “Smart” Polymer Nanogels as Pharmaceutical Carriers: A Versatile Platform for Programmed Delivery and Diagnostics. ACS Omega. 2021;6(8):5075-5090.
[64] HASHEMI F, MOHAJERI N, RADNIA F, et al. Design of an efficient fluorescent nanoplatform carrier for hydrophobic drugs along with green carbon dot: Possible application in cancer image-guided drug therapy. Photodiagnosis Photodyn Ther. 2022;37:102738.
[65] SHIN YK, PARK YR, LEE H, et al. Real-Time Monitoring of Colorectal Cancer Location and Lymph Node Metastasis and Photodynamic Therapy Using Fucoidan-Based Therapeutic Nanogel and Near-Infrared Fluorescence Diagnostic–Therapy System. Pharmaceutics. 2023;15(3):930.
[66] ZHANG W, DU B, GAO M, et al. A Hybrid Nanogel to Preserve Lysosome Integrity for Fluorescence Imaging. ACS Nano. 2021;15(10):16442-16451.
[67] MEKURIA SL, OUYANG Z, SONG C, et al. Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjug Chem. 2022;33(1):87-96.
[68] WU Q, ZHANG Q, YU T, et al. Self-Assembled Hybrid Nanogel as a Multifunctional Theranostic Probe for Enzyme-Regulated Ultrasound Imaging and Tumor Therapy. ACS Appl Bio Mater. 2021;4(5):4244-4253.
[69] KOSTELNIK T I, ORVIG C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem Rev. 2019;119(2): 902-956.
[70] LI L, CAO Y, ZHANG H, et al. Temperature sensitive nanogel-stabilized pickering emulsion of fluoroalkane for ultrasound guiding vascular embolization therapy. J Nanobiotechnology. 2023;21(1):413.
[71] ZENG Y, DOU T, MA L, et al. Biomedical Photoacoustic Imaging for Molecular Detection and Disease Diagnosis: “Always‐On” and “Turn‐On” Probes. Adv Sci (Weinh). 2022;9(25):e2202384.
[72] LIN X, XU Z, LI J, et al. Visualization of photothermal therapy by semiconducting polymer dots mediated photoacoustic detection in NIR II. J Nanobiotechnology. 2023;21(1):468.
[73] SUN X, LI Y, LIU X, et al. Tumor-specific enhanced NIR-II photoacoustic imaging via photothermal and low-pH coactivated AuNR@PNIPAM-VAA nanogel. J Nanobiotechnology. 2024;22(1): 326.
[74] LIU Y, BHATTARAI P, DAI Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48(7): 2053-2108.
[75] ZHANG C, SUN W, WANG Y, et al. Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS Appl Mater Interfaces. 2020;12(8):9107-9117.
[76] ZHANG L, WANG Z, ZHANG R, et al. Multi-Stimuli-Responsive and Cell Membrane Camouflaged Aggregation-Induced Emission Nanogels for Precise Chemo-photothermal Synergistic Therapy of Tumors. ACS Nano. 2023;17(24):
25205-25221.
[77] MIRHADI E, MASHREGHI M, FAAL MALEKI M, et al. Redox-sensitive nanoscale drug delivery systems for cancer treatment. Int J Pharm. 2020;589:119882.
[78] XU X, XIAO T, ZHANG C, et al. Multifunctional Low-Generation Dendrimer Nanogels as an Emerging Probe for Tumor-Specific CT/MR Dual-Modal Imaging. Biomacromolecules. 2023;24(2):967-976. |