中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (2): 469-479.doi: 10.12307/2026.519
• 生物材料综述 biomaterial review • 上一篇 下一篇
王 域,范民杰,郑朋飞
收稿日期:
2024-10-29
接受日期:
2025-01-06
出版日期:
2026-01-18
发布日期:
2025-07-02
通讯作者:
郑朋飞,博士,主任医师,副教授,南京医科大学附属儿童医院,江苏省南京市 210000
作者简介:
王域,男,2003年生,福建省宁德市人,汉族,主要从事骨与软骨组织工程研究。
Wang Yu, Fan Minjie, Zheng Pengfei
Received:
2024-10-29
Accepted:
2025-01-06
Online:
2026-01-18
Published:
2025-07-02
Contact:
Zheng Pengfei, MD, Chief physician, Associate professor, Children’s Hospital Affiliated to Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
About author:
Wang Yu, Children’s Hospital Affiliated to Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
摘要:
文题释义:
多重刺激响应性水凝胶:水凝胶材料是一种具有三维网状结构的聚合材料,能够吸收并保留大量的水分,在此基础上科学家通过添加化学基团、复合其他种类材料等多种改良方式使水凝胶能够响应骨损伤环境中的内源性刺激,或者人为施加外源性刺激,以可控地发挥水凝胶性能。
骨损伤修复:多种原因可导致骨骼结构的破坏和功能丧失,在生理状态下,人体会通过炎症、机化、成骨、重塑过程重新恢复为与原来结构功能相近的骨组织,但是在感染、软骨退行性病变、骨质疏松等病理状态下则需要医学干预,以部分恢复骨骼功能。
背景:多重刺激响应性水凝胶因特殊的响应能力以及多样性功能在骨组织工程领域受到了广泛关注。
目的:综述多重刺激响应性水凝胶在骨损伤修复中的应用,探讨其研发思路和未来发展方向。
方法:检索PubMed、Web of Science、万方数据库收录的相关文献,英文检索词为“hydrogels,bone defect,bone repair,bone healing,bone tissue engineering,Degenerative joint diseases,osteoarthritis,Cartilage”等,中文检索词为“多响应性水凝胶,智能水凝胶,骨损伤修复,骨组织工程”,文献检索时限为各数据库建库到2024年8月,最终纳入83篇文献进行综述。
结果与结论:多重刺激响应性水凝胶能够对物理、化学和生物等多个层面的刺激做出反应,同时发挥溶胀、形变、降解等固有功能以及其他材料赋予的特殊功能,使它们在解决骨损伤修复的临床问题中具有巨大的潜力。但在实际应用中,如何确保这些材料在复杂的生物体内环境中保持稳定性和持久性,在需要时能够可控无害地降解,是一个亟待解决的问题。
https://orcid.org/0009-0006-4045-6039(王域)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
王 域, 范民杰, 郑朋飞. 多重刺激响应性水凝胶在骨损伤修复中的应用:特殊响应能力及多样性功能[J]. 中国组织工程研究, 2026, 30(2): 469-479.
Wang Yu, Fan Minjie, Zheng Pengfei. Application of multistimuli-responsive hydrogels in bone damage repair: special responsiveness and diverse functions[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(2): 469-479.
[1] BARBOSA M, JABS EW, HUSTON S. Treacher Collins Syndrome. 2004 Jul 20 [updated 2024 Jun 20]. //ADAM MP, FELDMAN J, MIRZAA GM, PAGON RA, WALLACE SE, BEAN LJH, GRIPP KW, AMEMIYA A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. [2] GALINDO ZAVALA R, NÚÑEZ CUADROS E, DÍAZ CORDOVÉS-REGO G, et al. Avances en el tratamiento de la osteoporosis secundaria [Advances in the treatment of secondary osteoporosis]. An Pediatr (Barc). 2014;81(6):399.e1-7. [3] 李峰,尤炯鸣,王锋,等.浙江省温州地区老年脑卒中后患者髋部骨折发病率调查及危险因素分析[J]. 中国基层医药, 2024,31(5):675-680. [4] 熊竹,曾帅丹,韩帅,等.儿童肱骨髁上骨折区域性流行病学调查研究[J].中国骨与关节杂志,2021,10(3):210-214. [5] SCHADE AT, KHATRI C, NWANKWO H, et al. The economic burden of open tibia fractures: A systematic review. Injury. 2021; 52(6):1251-1259. [6] VAN BERGEN SH, MAHABIER KC, VAN LIESHOUT EMM, et al. Humeral shaft fracture: systematic review of non-operative and operative treatment. Arch Orthop Trauma Surg. 2023;143(8):5035-5054. [7] CANCIO-BELLO AM, BARLOW JD. Avascular Necrosis and Posttraumatic Arthritis After Proximal Humerus Fracture Internal Fixation: Evaluation and Management. Curr Rev Musculoskelet Med. 2023;16(2):66-74. [8] BHOGAL SS, D’AURIA JL, GEHRMANN SV, et al. Poymethyl Methacrylate for Elbow Arthroplasty: Is There Another Way? J Hand Surg Glob Online. 2024;6(2):233-235. [9] CALLAGHAN JJ, FOREST EE, OLEJNICZAK JP, et al. Charnley total hip arthroplasty in patients less than fifty years old. A twenty to twenty-five-year follow-up note. J Bone Joint Surg Am. 1998;80(5):704-714. [10] AL-TAMIMI AA, QUENTAL C, FOLGADO J, et al. Stress analysis in a bone fracture fixed with topology-optimised plates. Biomech Model Mechanobiol. 2020;19(2):693-699. [11] LEGG PI, MALIK-TABASSUM K, IBRAHIM YH, et al. Post-Operative Outcomes of Circular External Fixation in the Definitive Treatment of Tibial Plafond Fractures: A Systematic Review. Cureus. 2022;14(4):e24204. [12] PEPELASSI E, PERREA D, DONTAS I, et al. Porous Titanium Granules in comparison with Autogenous Bone Graft in Femoral Osseous Defects: A Histomorphometric Study of Bone Regeneration and Osseointegration in Rabbits. Biomed Res Int. 2019;2019:8105351. [13] KLEIN A, BAKHSHAI Y, ROEDER F, et al. Technique and results after immediate orthotopic replantation of extracorporeally irradiated tumor bone autografts with and without fibular augmentation in extremity tumors. BMC Musculoskelet Disord. 2021; 22(1):750. [14] 郑健茂,毛学理,凌均棨.镁基支架及其在动物骨缺损修复中的应用[J].国际口腔医学杂志, 2015(6):720-723. [15] COUTO DS, HONG Z, MANO JF. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater. 2009;5(1):115-123. [16] NII M, LAI JH, KEENEY M, et al. The effects of interactive mechanical and biochemical niche signaling on osteogenic differentiation of adipose-derived stem cells using combinatorial hydrogels. Acta Biomater. 2013;9(3):5475-5483. [17] WANG L, JANG G, BAN DK, et al. Multifunctional stimuli responsive polymer-gated iron and gold-embedded silica nano golf balls: Nanoshuttles for targeted on-demand theranostics. Bone Res. 2017;5: 17051. [18] LUO Z, ZHANG S, PAN J, et al. Time-responsive osteogenic niche of stem cells: A sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation. Biomaterials. 2018;163:25-42. [19] XUE B, PENG Y, ZHANG Y, et al. A Novel Superparamagnetic-Responsive Hydrogel Facilitates Disc Regeneration by Orchestrating Cell Recruitment, Proliferation, and Differentiation within Hostile Inflammatory Niche. Adv Sci (Weinh). 2024;11(44):e2408093. [20] LI Q, YU H, ZHAO F, et al. 3D Printing of Microenvironment-Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration. Adv Sci (Weinh). 2023;10(26): e2303650. [21] AGARWAL R, GARCÍA AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015;94:53-62. [22] ZANDI N, SANI ES, MOSTAFAVI E, et al. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials. 2021;267:120476. [23] JIANG Z, LI Y, SHEN Y, et al. Robust Hydrogel Adhesive with Dual Hydrogen Bond Networks. Molecules. 2021;26(9):2688. [24] ROCKWELL PN, MANEVAL JE, VOGEL BM, et al. Water Diffusion and Uptake in Injectable ETTMP/PEGDA Hydrogels. J Phys Chem B. 2023;127(22):5055-5061. [25] CAO H, DUAN L, ZHANG Y, et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1):426. [26] LIU W, GAO R, YANG C, et al. ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus-infected chronic skin wound healing. Sci Adv. 2022;8(27):eabn7006. [27] CHEN Y, WANG X, TAO S, et al. Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties. Mil Med Res. 2023;10(1):37. [28] KASS LE, NGUYEN J. Nanocarrier-hydrogel composite delivery systems for precision drug release. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(2): e1756. [29] LIU D, LI L, SHI BL, et al. Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing. Bioact Mater. 2022;24:96-111. [30] VINIKOOR T, DZIDOTOR GK, LE TT, et al. Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat Commun. 2023;14(1):6257. [31] ZHOU S, XIAO C, FAN L, et al. Injectable ultrasound-powered bone-adhesive nanocomposite hydrogel for electrically accelerated irregular bone defect healing. J Nanobiotechnology. 2024;22(1):54. [32] ALIABOUZAR M, KRIPFGANS OD, WANG WY, et al. Stable and transient bubble formation in acoustically-responsive scaffolds by acoustic droplet vaporization: theory and application in sequential release. Ultrason Sonochem. 2021;72:105430. [33] ALIABOUZAR M, DAVIDSON CD, WANG WY, et al. Spatiotemporal control of micromechanics and microstructure in acoustically-responsive scaffolds using acoustic droplet vaporization. Soft Matter. 2020;16(28):6501-6513. [34] HUANG L, QUESADA C, ALIABOUZAR M, et al. Spatially-directed angiogenesis using ultrasound-controlled release of basic fibroblast growth factor from acoustically-responsive scaffolds. Acta Biomater. 2021; 129:73-83. [35] ZHAO Z, ZHANG Y, MENG C, et al. Tissue-Penetrating Ultrasound-Triggered Hydrogel for Promoting Microvascular Network Reconstruction. Adv Sci (Weinh). 2024;11(23):e2401368. [36] WANG W, ZHANG G, WANG Y, et al. An injectable and thermosensitive hydrogel with nano-aided NIR-II phototherapeutic and chemical effects for periodontal antibacteria and bone regeneration. J Nanobiotechnology. 2023;21(1):367. [37] XIAO C, WANG R, FU R, et al. Piezo-enhanced near infrared photocatalytic nanoheterojunction integrated injectable biopolymer hydrogel for anti-osteosarcoma and osteogenesis combination therapy. Bioact Mater. 2024;34:381-400. [38] GEHRE C, QIU W, KLAUS JÄGER P, et al. Guiding bone cell network formation in 3D via photosensitized two-photon ablation. Acta Biomater. 2024;174:141-152. [39] GADZHIMAGOMEDOVA Z, ZOLOTUKHIN P, KIT O, et al. Nanocomposites for X-Ray Photodynamic Therapy. Int J Mol Sci. 2020; 21(11):4004. [40] HUANG Y, ZHANG L, JI Y, et al. A non-invasive smart scaffold for bone repair and monitoring. Bioact Mater. 2022;19:499-510. [41] ARAMBULA-MALDONADO R, LIU Y, XING M, et al. Bioactive and electrically conductive GelMA-BG-MWCNT nanocomposite hydrogel bone biomaterials. Biomater Adv. 2023;154:213616. [42] ARAMBULA-MALDONADO R, MEQUANINT K. Osteogenic Differentiation Potential of iMSCs on GelMA-BG-MWCNT Nanocomposite Hydrogels. Biomimetics (Basel). 2024;9(6):338. [43] RESINA L, EL HAUADI K, SANS J, et al. Electroresponsive and pH-Sensitive Hydrogel as Carrier for Controlled Chloramphenicol Release. Biomacromolecules. 2023;24(3): 1432-1444. [44] CHEAH E, BANSAL M, NGUYEN L, et al. Electrically responsive release of proteins from conducting polymer hydrogels. Acta Biomater. 2023;158:87-100. [45] SONG W, LI L, LIU X, et al. Hydrogel microrobots for biomedical applications. Front Chem. 2024;12:1416314. [46] DIAS AMM, COURTEAU A, BELLAYE PS, et al. Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia. Pharmaceutics. 2022;14(11):2388. [47] KASIŃSKI A, ŚWIERCZEK A, ZIELIŃSKA-PISKLAK M, et al. Dual-Stimuli-Sensitive Smart Hydrogels Containing Magnetic Nanoparticles as Antitumor Local Drug Delivery Systems-Synthesis and Characterization. Int J Mol Sci. 2023; 24(8):6906. [48] ZHOU Q, LIU J, YAN J, et al. Magnetic microspheres mimicking certain functions of macrophages: Towards precise antibacterial potency for bone defect healing. Mater Today Bio. 2023;20:100651. [49] CHEN W, WEN Y, FAN X, et al. Magnetically actuated intelligent hydrogel-based child-parent microrobots for targeted drug delivery. J Mater Chem B. 2021;9(4): 1030-1039. [50] TAO Y, LI L, YANG X, et al. Magnetic-driven hydrogel microrobots for promoting osteosarcoma chemo-therapy with synthetic lethality strategy. Front Chem. 2024;12:1386076. [51] IBRAHIEM B, SHAMMA R, SALAMA A, et al. Magnetic targeting of lornoxicam/SPION bilosomes loaded in a thermosensitive in situ hydrogel system for the management of osteoarthritis: Optimization, in vitro, ex vivo, and in vivo studies in rat model via modulation of RANKL/OPG. Drug Deliv Transl Res. 2024;14(7):1982-2002. [52] ZHAO Q, YUE X, MIAOMIAO L, et al. Nano-injectable pH/NIR-responsive hydrogel for chemo-photothermal synergistic drug delivery. J Biomater Appl. 2023;38(5): 614-628. [53] LI Q, WANG R, XUE J, et al. ZIF-8-Modified Black Phosphorus Nanosheets Incorporated into Injectable Dual-Component Hydrogels for Enhanced Photothermal Antibacterial and Osteogenic Activities. ACS Appl Mater Interfaces. 2024;16(25):32058-32077. [54] WU M, LIU H, ZHU Y, et al. Bioinspired soft-hard combined system with mild photothermal therapeutic activity promotes diabetic bone defect healing via synergetic effects of immune activation and angiogenesis. Theranostics. 2024;14(10): 4014-4057. [55] XIA Y, ZHANG Z, ZHOU K, et al. Cuprorivaite/hardystonite/alginate composite hydrogel with thermionic effect for the treatment of peri-implant lesion. Regen Biomater. 2024;11:rbae028. [56] SCALZONE A, BONIFACIO MA, COMETA S, et al. pH-Triggered Adhesiveness and Cohesiveness of Chondroitin Sulfate-Catechol Biopolymer for Biomedical Applications. Front Bioeng Biotechnol. 2020;8:712. [57] LIU S, HAN Z, HAO JN, et al. Engineering of a NIR-activable hydrogel-coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone derivative release property for angiogenesis and bone regeneration. Bioact Mater. 2023;26:1-13. [58] CASTRO NAVA A, DOOLAAR IC, LABUDE-WEBER N, et al. Actuation of Soft Thermoresponsive Hydrogels Mechanically Stimulates Osteogenesis in Human Mesenchymal Stem Cells without Biochemical Factors. ACS Appl Mater Interfaces. 2024;16(1):30-43. [59] YANG Q, XU M, FANG H, et al. Targeting micromotion for mimicking natural bone healing by using NIPAM/NbC hydrogel. Bioact Mater. 2024;39:41-58. [60] CHEN QX, LI JY, HAN F, et al. A Multifunctional Composite Hydrogel That Rescues the ROS Microenvironment and Guides the Immune Response for Repair of Osteoporotic Bone Defects. Adv Funct Mater. 2022;32(27).doi:10.1002/adfm. 202201067 [61] LI JY, HAN FX, MA JJ, et al. Targeting Endogenous Hydrogen Peroxide at Bone Defects Promotes Bone Repair. Adv Funct Mater. 2022;32(10). doi:10.1002/adfm.202111208 [62] QI H, WANG B, WANG M, et al. A pH/ROS-responsive antioxidative and antimicrobial GelMA hydrogel for on-demand drug delivery and enhanced osteogenic differentiation in vitro. Int J Pharm. 2024; 657:124134. [63] LUO Q, YANG Y, HO C, et al. Dynamic hydrogel-metal-organic framework system promotes bone regeneration in periodontitis through controlled drug delivery. J Nanobiotechnology. 2024; 22(1):287. [64] LU K, WANG D, ZOU G, et al. A multifunctional composite hydrogel that sequentially modulates the process of bone healing and guides the repair of bone defects. Biomed Mater. 2024;19(3). doi: 10.1088/1748-605X/ad2ed1. [65] DING Y, HAO Y, YUAN Z, et al. A dual-functional implant with an enzyme-responsive effect for bacterial infection therapy and tissue regeneration. Biomater Sci. 2020;8(7):1840-1854. [66] MAO Y, ZHANG Y, WANG Y, et al. A multifunctional nanocomposite hydrogel with controllable release behavior enhances bone regeneration. Regen Biomater. 2023;10:rbad046. [67] ZHANG Y, LIN X, CHEN X, et al. Strategies to Regulate the Degradation and Clearance of Mesoporous Silica Nanoparticles: A Review. Int J Nanomedicine. 2024;19:5859-5878. [68] GONG S, LANG S, WANG Y, et al. pH-Responsive Mesoporous Silica Nanoparticles Loaded with Naringin for Targeted Osteoclast Inhibition and Bone Regeneration. Int J Nanomedicine. 2024; 19:6337-6358. [69] WU Y, LIN Z, YAN Z, et al. Sinomenine contributes to the inhibition of the inflammatory response and the improvement of osteoarthritis in mouse-cartilage cells by acting on the Nrf2/HO-1 and NF-κB signaling pathways. Int Immunopharmacol. 2019;75:105715. [70] LI Z, LIU B, ZHAO D, et al. Protective effects of Nebivolol against interleukin-1β (IL-1β)-induced type II collagen destruction mediated by matrix metalloproteinase-13 (MMP-13). Cell Stress Chaperones. 2017; 22(6):767-774. [71] LI D, CHEN K, TANG H, et al. A Logic-Based Diagnostic and Therapeutic Hydrogel with Multistimuli Responsiveness to Orchestrate Diabetic Bone Regeneration. Adv Mater. 2022;34(11):e2108430. [72] ZHOU T, XIONG H, YAO SY, et al. Hypoxia and Matrix Metalloproteinase 13-Responsive Hydrogel Microspheres Alleviate Osteoarthritis Progression In Vivo. Small. 2024;20(19):e2308599. [73] SINGH R, JADHAV K, KAMBOJ R, et al. Self-actuating inflammation responsive hydrogel microsphere formulation for controlled drug release in rheumatoid arthritis (RA): Animal trials and study in human fibroblast like synoviocytes (hFLS) of RA patients. Biomater Adv. 2024;160:213853. [74] ZHANG M, YU T, LI J, et al. Matrix Metalloproteinase-Responsive Hydrogel with On-Demand Release of Phosphatidylserine Promotes Bone Regeneration Through Immunomodulation. Adv Sci (Weinh). 2024;11(20):e2306924. [75] LI S, ZHENG W, DENG W, et al. Logic-Based Strategy for Spatiotemporal Release of Dual Extracellular Vesicles in Osteoarthritis Treatment. Adv Sci (Weinh). 2024;11(26):e2403227. [76] KYRIAKIDIS T, PITSILOS C, IOSIFIDOU M, et al. Stem cells for the treatment of early to moderate osteoarthritis of the knee: a systematic review. J Exp Orthop. 2023;10(1):102. [77] VEGA A, MARTÍN-FERRERO MA, DEL CANTO F, et al. Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial. Transplantation. 2015; 99(8):1681-1690. [78] HE L, HE T, FARRAR S, et al. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol Biochem. 2017;44(2):532-553. [79] ATASHI F, MODARRESSI A, PEPPER MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 2015;24(10):1150-1163. [80] MA J, LI J, WEI S, et al. Delivery of dental pulp stem cells by an injectable ROS-responsive hydrogel promotes temporomandibular joint cartilage repair via enhancing anti-apoptosis and regulating microenvironment. J Tissue Eng. 2024;15:20417314241260436. [81] LIU S, CHENG S, CHEN B, et al. Microvesicles-hydrogel breaks the cycle of cellular senescence by improving mitochondrial function to treat osteoarthritis. J Nanobiotechnology. 2023; 21(1):429. [82] LU X, DAI S, HUANG B, et al. Exosomes loaded a smart bilayer-hydrogel scaffold with ROS-scavenging and macrophage-reprogramming properties for repairing cartilage defect. Bioact Mater. 2024;38: 137-153. [83] WANG T, HUANG C, FANG Z, et al. A dual dynamically cross-linked hydrogel promotes rheumatoid arthritis repair through ROS initiative regulation and microenvironment modulation-independent triptolide release. Mater Today Bio. 2024;26:101042. |
[1] | 王 卓, 孙盼盼, 程焕芝, 曹婷婷. 壳聚糖在口腔软硬组织修复与再生中的应用[J]. 中国组织工程研究, 2026, 30(2): 459-468. |
[2] | 周世博, 俞 兴, 陈海龙, 熊 洋. 纳米晶胶原基骨联合补肾壮筋汤修复骨质疏松大鼠骨缺损[J]. 中国组织工程研究, 2026, 30(2): 354-361. |
[3] | 闫启全, 杨立斌, 李梦君, 倪亚卓, 陈科颖, 许 博, 李耀扬, 马士卿, 李 睿, 李建文. 负载抗菌肽KR-12-a5猪小肠黏膜下层复合纳米羟基磷灰石生物支架的制备及抗菌性能[J]. 中国组织工程研究, 2026, 30(2): 384-394. |
[4] | 袁 茜, 张 昊, 庞 杰. 负载柚皮苷壳聚糖/β-磷酸三钙支架的表征及生物学性能[J]. 中国组织工程研究, 2026, 30(2): 424-432. |
[5] | 张峻玮, 陈玲玲, 马振元, 聂伟志, 李朝辉, 王海涛, 段来宝, 侯金永, 毕宏政. 钛制弹性髓内钉治疗锁骨中段骨折断端三维移位及危险因素分析[J]. 中国组织工程研究, 2026, 30(2): 269-277. |
[6] | 刘 博, 吾湖孜·吾拉木, 朱光兆, 郭晓斌, 宋子悦, 孟兴补, 胡俊杰, 张晓岗. 贻贝源性抗菌肽涂层改性假体预防早期假体周围感染和调节骨转入[J]. 中国组织工程研究, 2026, 30(2): 278-287. |
[7] | 郭敬文, 王庆伟, 何子俊, 胡梓航, 陈 志, 朱 荣, 王煜明, 刘文菲, 罗庆禄. 不同浓度硅基生物陶瓷关节腔内注射治疗大鼠膝骨关节炎[J]. 中国组织工程研究, 2026, 30(2): 288-295. |
该文综述了多重刺激响应性水凝胶在骨损伤修复领域的应用,并探讨了其研发思路和未来发展方向。文章分析了现有骨损伤修复方法的不足,提出了开发新型骨修复材料的必要性,介绍了水凝胶材料的优点,包括可塑性、溶胀性和降解性等,是一种具有潜力的新型骨修复材料,以及现有水凝胶材料成为一种成熟骨修复材料仍需改进之处,如缺乏响应环境变化的能力、降解速率不可控等。文章按照刺激来源(内源性/外源性)和响应类型(固有性质/附加性能)对多重刺激响应性水凝胶进行了分类,并详细介绍了声响应、光响应、电响应、磁响应、热响应、pH值响应、金属基质蛋白酶响应和活性氧响应等不同类型水凝胶在骨损伤修复中的应用。文章总结多重刺激响应性水凝胶的研发思路,包括将多种响应能力赋予水凝胶,构建双重水凝胶网络,以及开发全新的多功能水凝胶支架等。最后提出了多重刺激响应性水凝胶面临的挑战,如材料稳定性、可控降解和体内应用等,并展望了未来发展方向,包括开发新型水凝胶材料、构建模块化设计。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||