[1] SONG H, ZHANG Y, ZHANG Z, et al. Hydroxyapatite/NELL-1 Nanoparticles Electrospun Fibers for Osteoinduction in Bone Tissue Engineering Application. Int J Nanomedicine. 2021;16:4321-4332.
[2] COHEN E, POVERENOV E. Hydrophilic Chitosan Derivatives: Synthesis and Applications. Chemistry. 2022;28(67): e202202156
[3] JUNCEDA-MENA I, GARCÍA-JUNCEDA E, REVUELTA J. From the problem to the solution: Chitosan valorization cycle. Carbohydr Polym. 2023;309:120674.
[4] SABERI RISEH R, VATANKHAH M, HASSANISAADI M, et al. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydr Polym. 2023;309:120666.
[5] MENG Q, ZHONG S, WANG J, et al. Advances in chitosan-based microcapsules and their applications. Carbohydr Polym. 2023;300: 120265.
[6] MENG W, SUN H, MU T, et al. Chitosan-based Pickering emulsion: A comprehensive review on their stabilizers, bioavailability, applications and regulations. Carbohydr Polym. 2023;304:120491.
[7] GAL MR, RAHMANINIA M, HUBBE MA. A comprehensive review of chitosan applications in paper science and technologies. Carbohydr Polym. 2023;309: 120665.
[8] SZULC M, LEWANDOWSKA K. Biomaterials Based on Chitosan and Its Derivatives and Their Potential in Tissue Engineering and Other Biomedical Applications-A Review. Molecules. 2022;28(1):247.
[9] SAHEED IO, OH WD, SUAH FBM. Chitosan modifications for adsorption of pollutants - A review. J Hazard Mater. 2021;408:124889.
[10] PETRONI S, TAGLIARO I, ANTONINI C, et al.
Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Mar Drugs. 2023; 21(3):147.
[11] LIU K, DONG X, WANG Y, et al. Dopamine-modified chitosan hydrogel for spinal cord injury. Carbohydr Polym. 2022;298:120047.
[12] WANG W, XUE C, MAO X. Chitosan: Structural modification, biological activity and application. Int J Biol Macromol. 2020; 164:4532-4546.
[13] RÓNA V, BENCZE B, KELEMEN K, et al. Effect of Chitosan on the Number of Streptococcus mutans in Saliva: A Meta-Analysis and Systematic Review. Int J Mol Sci. 2023;24(20):15270.
[14] 张文倩,朱佳珂,张雯宇,等.2022年内蒙古自治区饮用水中氟化物监测及健康风险评估[J].中国公共卫生,2024,40(11): 1341-1346.
[15] BURGETTE JM, DAHL ZT, YI JS,et al. Mothers’ Sources of Child Fluoride Information and Misinformation From Social Connections. JAMA Netw Open. 2022;5(4):e226414.
[16] RASHKI S, ASGARPOUR K, TARRAHIMOFRAD H,et al. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym. 2021;251:117108.
[17] ZHANG C, HUI D, DU C,et al. Preparation and application of chitosan biomaterials in dentistry. Int J Biol Macromol. 2021;167: 1198-1210.
[18] FLORES-ESPINOZA AI, GARCIA-CONTRERAS R, GUZMAN-ROCHA DA, et al. Gelatin-Chitosan Hydrogel Biological, Antimicrobial and Mechanical Properties for Dental Applications. Biomimetics (Basel). 2023; 8(8):575.
[19] SUBRAMANIYAN K, KEMPARAJ U, CHAVAN S, et al. Comparative Evaluation of Antimicrobial Activity of Cotton Balls Incorporated With Musa paradisiaca and Chitosan: An In Vitro Study. Cureus. 2022;14(8):e27553.
[20] CAMPUS G, COCCO F, WIERICHS RJ, et al.
Effects of Hydroxyapatite-Containing Toothpastes on Some Caries-Related Variables: A Randomised Clinical Trial. Int Dent J. 2024;74(4):754-761.
[21] DURAISAMY R, GANAPATHY D, SHANMUGAM R, et al. Assessment of Antimicrobial Activity of Nanocomposites Based on Nano-Hydroxyapatite (HAP), Chitosan, and Vitamin K2. Cureus. 2024; 16(1):e53339.
[22] RAHAYU DP, DRAHEIM R, LALATSA A, et al. Harnessing the Antibacterial Properties of Fluoridated Chitosan Polymers against Oral Biofilms. Pharmaceutics. 2022;14(3):488.
[23] MU R, ZHANG H, ZHANG Z, et al. Trans-cinnamaldehyde loaded chitosan based nanocapsules display antibacterial and antibiofilm effects against cavity-causing Streptococcus mutans. J Oral Microbiol. 2023;15(1):2243067.
[24] PARAMESWARI BD, DHEVISHRI S,RANJITH R, et al. Nanoparticles in Prosthetic Materials: A Literature Review. J Pharm Bioallied Sci.2021;13(Suppl 2):S917-S920.
[25] HANIASTUTI T, PUSPASARI TA, HAKIM ER, et al. Potential Effect of Giant Freshwater Prawn Shell Nano Chitosan in Inhibiting the Development of Streptococcus mutans and Streptococcus sanguinis Biofilm In Vitro. Int J Dent. 2023;2023:8890750.
[26] VAS NV, JAIN RK, RAMACHANDRAN SK. Gingerol and Chitosan-Based Coating of Thermoformed Orthodontic Aligners: Characterization, Assessment of Anti-Microbial Activity, and Scratch Resistance: An In Vitro Study. Cureus. 2023;15(8):e42933.
[27] MOHAMMADIPOUR HS, TAJZADEH P, ATASHPARVAR M, et al. Formulation and antibacterial properties of lollipops containing of chitosan- zinc oxide nano particles on planktonic and biofilm forms of Streptococcus mutans and Lactobacillus acidophilus. BMC Oral Health. 2023;23(1):957.
[28] NANDHINI G, SASIDHARAN NAIR R, MANO CHRISTIANE ANGELO JB, et al. Comparative Analysis of the Effectiveness of Four Distinct Remineralizing Agents in Artificial White Spot Lesions Following Chitosan Nanoparticle Pretreatment: An In Vitro Study. Cureus. 2024;16(5):e59924.
[29] NIU J, LI D, ZHOU Z, et al. The incorporation of phosphorylated chitosan/amorphous calcium phosphate nanocomplex into an experimental composite resin. Dent Mater J. 2021;40(2):422-430.
[30] ZHANG Q, GUO J, HUANG Z, et al. Promotion Effect of Carboxymethyl Chitosan on Dental Caries via Intrafibrillar Mineralization of Collagen and Dentin Remineralization. Materials (Basel). 2022;15(14):4835.
[31] ABDELKAFY H, ELSHEIKH HM, KATAIA MM, et al. Efficacy of using chitosan and chitosan nanoparticles as final irrigating solutions on smear layer removal and mineral content of intraradicular dentin. J Indian Soc Pedod Prev Dent. 2023;41(2):170-177.
[32] PUTRANTO AW, MEIDYAWATI R, DWISEPTYOGA S, et al. Evaluation of Physical Properties in Carboxymethyl Chitosan Modified Glass Ionomer Cements and the Effect for Dentin Remineralization: SEM/EDX, Compressive Strength, and Ca/P Ratio. Eur J Dent. 2024. doi: 10.1055/s-0044-1786864.
[33] KWON T, LAMSTER IB, LEVIN L. Current Concepts in the Management of Periodontitis. Int Dent J. 2021;71(6): 462-476.
[34] ALGHAMDI B, JEON HH, NI J, et al. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep. 2023;21(2):128-146.
[35] JAVADKHANI A, SHOKOUHI B, MOSAYEBZADEH A, et al. Nano-Catechin Gel as a Sustained Release Antimicrobial Agent against Clinically Isolated Porphyromonas gingivalis for Promising Treatment of Periodontal Diseases. Biomedicines. 2023; 11(7):1932.
[36] HUANG H, HAN R, HUANG PP, et al. Preparation and Performance Evaluation of a Zinc Oxide-Graphene Oxideloaded Chitosan-Based Thermosensitive Gel. J Microbiol Biotechnol. 2024;34(6): 1229-1238.
[37] LAZAREVIC M, PETROVIC S, PIERFELICE TV, et al. Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan-Nano-Hydroxyapatite. Biomolecules. 2023;13(4):579.
[38] JALALUDDIN M, KULKARNI A, RAJ K, et al.
Assessment of Antimicrobial Efficacy of Chitosan-Based Tetracycline Gel on Periodontal Pathogens: An In vitro Study. J Pharm Bioallied Sci. 2023;15(Suppl 1): S438-S441.
[39] ANGGANI HS, PERDANA RG, SIREGAR E, et al. The effect of coating chitosan on Porphyromonas gingivalis biofilm formation in the surface of orthodontic mini-implant. J Adv Pharm Technol Res. 2021;12(1): 84-88.
[40] THANGAVELU A, STELIN KS, VANNALA V,
et al . An Overview of Chitosan and Its Role in Periodontics. J Pharm Bioallied Sci. 2021; 13(Suppl 1):S15-S18.
[41] GARCIA LGS, ROCHA MGD, FREIRE RS,
et al. Chitosan microparticles loaded with essential oils inhibit duo-biofilms of Candida albicans and Streptococcus mutans. J Appl Oral Sci. 2023;31:e20230146.
[42] ARAUJO HC, RAMÍREZ CARMONA W, SATO C, et al. In vitro antimicrobial effects of chitosan on microcosm biofilms of oral candidiasis. J Dent. 2022;125:104246.
[43] GAMIL Y, HAMED MG, ELSAYED M, et al. The anti-fungal effect of miconazole and miconazole-loaded chitosan nanoparticles gels in diabetic patients with Oral candidiasis-randomized control clinical trial and microbiological analysis. BMC Oral Health. 2024;24(1):196.
[44] PÉREZ-SAYÁNS M, BEIRO-FUENTES R, OTERO-REY EM, et al. Efficacy of different formulations of nystatin in an experimental model of oral candidiasis in sialoadenectomized rats. J Dent Sci. 2021; 16(1):123-130.
[45] NALBANTOĞLU B, NALBANTOĞLU A. Vitamin D Levels in Children With Recurrent Aphthous Stomatitis. Ear Nose Throat J. 2020;99(7):460-463.
[46] GASMI BENAHMED A, NOOR S, MENZEL A,
et al. Oral Aphthous: Pathophysiology, Clinical Aspects and Medical Treatment. Arch Razi Inst. 2021;76(5):1155-1163.
[47] ZHANG Z, ZHANG Q, GAO S, et al. Antibacterial, anti-inflammatory and wet-adhesive poly(ionic liquid)-based oral patch for the treatment of oral ulcers with bacterial infection. Acta Biomater. 2023;166:254-265.
[48] ZHANG W, BAO B, JIANG F, et al. Promoting Oral Mucosal Wound Healing with a Hydrogel Adhesive Based on a Phototriggered S-Nitrosylation Coupling Reaction. Adv Mater. 2021;33(48): e2105667.
[49] PARRA-MORENO FJ, EGIDO-MORENO S, SCHEMEL-SUÁREZ M, et al. Treatment of recurrent aphtous stomatitis: A systematic review. Med Oral Patol Oral Cir Bucal. 2023; 28(1):e87-e98.
[50] SAMIRANINEZHAD N, KAZEMI H, REZAEE M, et al. Effect of lactobacillus reuteri-derived probiotic nano-formulation on recurrent aphthous stomatitis: a double-blinded randomized clinical trial. BMC Oral Health. 2023;23(1):1019.
[51] MILANDA T, CINDANA MO’O FR, MOHAMMED AFA, et al. Alginate/Chitosan-Based Hydrogel Film Containing α-Mangostin for Recurrent Aphthous Stomatitis Therapy in Rats. Pharmaceutics. 2022;14(8):1709.
[52] OSSAMA M, LAMIE C, TAREK M, et al. Management of recurrent aphthous ulcers exploiting polymer-based Muco-adhesive sponges: in-vitro and in-vivo evaluation. Drug Deliv. 2021;28(1):87-99.
[53] ROMERO-OLID MN, BUCATARU E, RAMOS-GARCÍA P, et al. Efficacy of Chlorhexidine after Oral Surgery Procedures on Wound Healing: Systematic Review and Meta-Analysis. Antibiotics (Basel). 2023; 12(10):1552.
[54] BAGHERI M, VALIDI M, GHOLIPOUR A, et al. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioeng Transl Med. 2021;7(1):e10254.
[55] POURSEIF T, GHAFELEHBASHI R, ABDIHAJI M, et al. Chitosan -based nanoniosome for potential wound healing applications: Synergy of controlled drug release and antibacterial activity. Int J Biol Macromol. 2023;230:123185.
[56] LIU T, ZHANG Z, LIU J, et al. Electrospun kaolin-loaded chitosan/PEO nanofibers for rapid hemostasis and accelerated wound healing. Int J Biol Macromol. 2022;217: 998-1011.
[57] CHEN Z, YUAN M, LI H, et al. Succinylated chitosan derivative restore HUVEC cells function damaged by TNF-α and high glucose in vitro and enhanced wound healing. Int J Biol Macromol. 2024;265(Pt 2):130825.
[58] ZHANG J, CHEN K, DING C, et al. Fabrication of chitosan/PVP/dihydroquercetin nanocomposite film for in vitro and in vivo evaluation of wound healing. Int J Biol Macromol. 2022;206:591-604.
[59] KUMAR NH, SAMUEL S, MATHEW S, et al. Maxillofacial Soft-tissue Healing Efficacy between Nano-chitosan and Collagen-Chitosan Membrane - A Comparative Study. Ann Maxillofac Surg. 2023;13(2):144-148.
[60] GÜR R, BÜYÜKAKYÜZ N, AYDIL BA, et al. Histopathological investigation of the effect of chitosan on oral mucous wound healing in experimentally established diabetic rats. Deneysel olarak oluşturulmuş diyabetik sıçanlarda kitosanın oral mukozada yara iyileşmesine etkisinin histopatolojik araştırılması. Ulus Travma Acil Cerrahi Derg. 2023;29(2):140-148.
[61] NAMDAR P, MOADDABI A, YAZDIAN R, et al. Histologic Evaluation of the Effects of Folinic Acid Chitosan Hydrogel and Botulinum Toxin A on Wound Repair of Cleft Lip Surgery in Rats. J Funct Biomater. 2022;13(3):142.
[62] DE JESUS G, MARQUES L, VALE N, et al. The Effects of Chitosan on the Healing Process of Oral Mucosa: An Observational Cohort Feasibility Split-Mouth Study. Nanomaterials (Basel). 2023;13(4):706.
[63] PEI J, NATARAJAN PM, UMAPATHY VR, et al.
Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy. Molecules. 2024;29(11):2706.
[64] SINGH SK, SINGH R. Nanotherapy: targeting the tumour microenvironment. Nat Rev Cancer. 2022;22(5):258.
[65] WANG J, WANG K, LIANG J, et al. Chitosan-tripolyphosphate nanoparticles-mediated co-delivery of MTHFD1L shRNA and 5-aminolevulinic acid for combination photodynamic-gene therapy in oral cancer. Photodiagnosis Photodyn Ther. 2021;36: 102581.
[66] MAJ M, TYLKOWSKI B, KONOPKA P, et al. Advancing oral health: Harnessing the potential of chitosan and polyphenols in innovative mouthwash formulation. Biomed Pharmacother. 2024;175:116654.
[67] MUSTAFA A, INDIRAN MA, RAMALINGAM K,
et al. Anticancer potential of thiocolchicoside and lauric acid loaded chitosan nanogel against oral cancer cell lines: a comprehensive study. Sci Rep. 2024;14(1):9270.
[68] LI K, QIU Y, LIU X,et al. Biomimetic Nanosystems for the Synergistic Delivery of miR-144/451a for Oral Squamous Cell Carcinoma. Balkan Med J. 2022;39(3):178-186.
[69] GONÇALVES DA COSTA SOUSA M, CONCEIÇÃO DE ALMEIDA G, MARTINS MOTA DC, et al. Antibiofilm and immunomodulatory resorbable nanofibrous filing for dental pulp regenerative procedures. Bioact Mater. 2022;16:173-186.
[70] LOUKELIS K, MACHLA F, BAKOPOULOU A, et al. Kappa-Carrageenan/Chitosan/Gelatin Scaffolds Provide a Biomimetic Microenvironment for Dentin-Pulp Regeneration. Int J Mol Sci. 2023;24(7): 6465.
[71] ZAMORA I, ALFONSO MORALES G, CASTRO JI, et al. Chitosan (CS)/Hydroxyapatite (HA)/Tricalcium Phosphate (β-TCP)-Based Composites as a Potential Material for Pulp Tissue Regeneration. Polymers (Basel). 2023;15(15):3213.
[72] HSIEH HY, YAO CC, HSU LF, et al. Biological properties of human periodontal ligament cell spheroids cultivated on chitosan and polyvinyl alcohol membranes. J Formos Med Assoc. 2022;121(11):2191-2202.
[73] BASIR L, BABASHAHI E, RAZAVI SM, et al. Effects of Chitosan as a Novel Obturation Material for Pulpectomized Teeth on Periapical Inflammation, Periodontal Ligament Widening, and Hard Tissue Resorption: A Preliminary Exploratory Study on Dogs. Front Dent. 2024;21:22.
[74] 刘莉.负载GMSCs和TGF-β1的壳聚糖水凝胶促进牙周膜再生的实验研究[D].长春:吉林大学,2022.
[75] 王宇洁,邹杰林,蔡明轩,等.壳聚糖基水凝胶在口腔组织工程中的应用[J].中南大学学报(医学版),2023,48(1):138-147.
[76] 胡通,张珏,朱秀安,等.负载BMP-2壳聚糖水凝胶在大鼠完全脱位牙再植愈合中的研究[J].皖南医学院学报,2024,43(4):361-364.
[77] SHIBAHARA T. Antiresorptive Agent-Related Osteonecrosis of the Jaw (ARONJ): A Twist of Fate in the Bone. Tohoku J Exp Med. 2019; 247(2):75-86.
[78] LÓPEZ-VALVERDE N, LÓPEZ-VALVERDE A, CORTÉS MP, et al. Bone Quantification Around Chitosan-Coated Titanium Dental Implants: A Preliminary Study by Micro-CT Analysis in Jaw of a Canine Model. Front Bioeng Biotechnol. 2022;10:858786.
[79] SUN M, CHENG L, XU Z, et al. Preparation and Characterization of Vancomycin Hydrochloride-Loaded Mesoporous Silica Composite Hydrogels. Front Bioeng Biotechnol. 2022;10:826971.
[80] PATLATAYA NN, BOLSHAKOV IN, LEVENETS AA, et al. Experimental Early Stimulation of Bone Tissue Neo-Formation for Critical Size Elimination Defects in the Maxillofacial Region. Polymers (Basel). 2023;15(21):4232.
[81] XU W, TAN W, LI C, et al. Metformin-loaded β-TCP/CTS/SBA-15 composite scaffolds promote alveolar bone regeneration in a rat model of periodontitis. J Mater Sci Mater Med. 2021;32(12):145.
[82] LUO J, LIANG C, CHEN K, et al. Artesunate-loaded thermosensitive chitosan hydrogel promotes osteogenesis of maxillary tooth extraction through regulating T lymphocytes in type 2 diabetic rats. BMC Oral Health. 2024;24(1):356.
[83] YU F, GENG D, KUANG Z, et al. Sequentially releasing self-healing hydrogel fabricated with TGFβ3-microspheres and bFGF to facilitate rat alveolar bone defect repair. Asian J Pharm Sci. 2022;17(3):425-434.
[84] STAFIN K, ŚLIWA P, PIĄTKOWSKI M. Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique. Int J Mol Sci. 2023;24(22):16180.
[85] LUO Q, YANG Y, HO C, et al. Dynamic hydrogel-metal-organic framework system promotes bone regeneration in periodontitis through controlled drug delivery. J Nanobiotechnology. 2024;22(1):287.
[86] HUANG CL, HUANG HY, LU YC, et al. Development of a flexible film made of polyvinyl alcohol with chitosan based thermosensitive hydrogel. J Dent Sci. 2023; 18(2):822-832.
[87] GU Z, QIU C, CHEN L, et al. Injectable thermosensitive hydrogel loading erythropoietin and FK506 alleviates gingival inflammation and promotes periodontal tissue regeneration. Front Bioeng Biotechnol. 2024;11:1323554.
[88] WEI XY, XIA W, ZHOU T. Antibacterial activity and action mechanism of a novel chitosan oligosaccharide derivative against dominant spoilage bacteria isolated from shrimp Penaeus vannamei. Lett Appl Microbiol. 2022;74(2):268-276. |