中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (20): 5304-5311.doi: 10.12307/2026.147

• 生物材料综述 biomaterial review • 上一篇    下一篇

3D打印生物可吸收聚酯支架用于骨再生治疗

唐  浩1,钟  倩2,吴洪瀚1,吴恒鹏1,吴兴凯1,瓦庆德1   

  1. 1遵义医科大学第二附属医院骨科,贵州省遵义市   563006;2重庆市永川区妇幼保健院,重庆市   402160
  • 接受日期:2025-05-24 出版日期:2026-07-18 发布日期:2025-12-02
  • 通讯作者: 瓦庆德,主任医师,教授,遵义医科大学第二附属医院骨科,贵州省遵义市 563006
  • 作者简介:唐浩,男,2000年生,四川省成都市人,汉族,医师
  • 基金资助:
    国家自然科学基金项目(82160577),项目负责人:瓦庆德;贵州省科技计划项目(黔科合基础-ZK[2021]重点007),项目负责人:瓦庆德;贵州省优秀青年科技人才培养项目(黔科合平台人才[2021]5613号),项目负责人:瓦庆德

3D-printed biodegradable polyester-based scaffolds in bone regeneration therapy

Tang Hao1, Zhong Qian2, Wu Honghan1, Wu Hengpeng1, Wu Xingkai1, Wa Qingde1   

  1. 1Department of Orthopedics, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou Province, China; 2Chongqing Yongchuan District Maternal and Child Health Hospital, Chongqing 402160, China
  • Accepted:2025-05-24 Online:2026-07-18 Published:2025-12-02
  • Contact: Wa Qingde, Chief physician, Professor, Department of Orthopedics, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou Province, China
  • About author:Tang Hao, Physician, Department of Orthopedics, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563006, Guizhou Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 82160577 (to WQD); Guizhou Provincial Science and Technology Plan Project, No. ZK[2021]007 (to WQD); Guizhou Province Outstanding Young Science and Technology Talent Training Project, No. [2021]5613 (to WQD) 

摘要:

文题释义:
分子质量梯度调控:指在可降解聚酯等材料中,通过空间控制区域分子质量分布(高→低或定制化梯度),利用分子质量对力学强度、降解速率的调控规律(如高分子质量区维持强度,低分子质量区加速溶解)构建时空适配的降解传递体系。
拓扑优化技术:一种基于数学建模与智能算法的先进设计方法,通过对设计域内材料分布进行动态调整,在满足力学性能、质量约束等目标下寻求最优结构形态(如轻量化、高比强度)。

背景:以聚乳酸、聚己内酯为代表的可降解聚酯基材料兼具可控降解性、优异力学性能及生物相容性,成为骨再生领域的研究焦点,然而,这些材料的固有疏水性、降解副产物的酸性微环境以及与传统骨修复需求的适配性仍需进一步优化。
目的:系统探讨聚酯基材料的理化特性与3D打印技术的工艺适配性,阐明支架孔隙调控、生物活性因子负载及降解-再生协同机制,综合评述当前技术瓶颈及临床转化障碍。
方法:以“Printing,Three-Dimensional,3D printing,Three-dimensional printing,Additive manufacturing,Bioprinting,Biocompatible Materials,Absorbable Implants,Polyesters,bioabsorbable,bioresorbable,biodegradable,resorbable,polyester,PLA,polylactic acid,PGA,polyglycolic acid,PCL,polycaprolactone,Bone Regeneration,Bone and Bones,Bone Tissue Engineering,bone regeneration,bone repair,osseous regeneration,bone defect,fracture healing,osteogenesis,Tissue Scaffolds,scaffold,3D scaffold”为英文检索词,以“打印,三维,3D打印,三维打印,增材制造,生物打印,生物相容性材料,可吸收植入物,聚酯,生物可吸收,生物可降解,可再吸收,聚酯,PLA,聚乳酸,PGA,聚乙醇酸,PCL,聚己内酯,骨再生,骨骼与骨,骨组织工程,骨修复,骨性再生,骨缺损,骨折愈合,成骨,组织支架,支架,3D支架”为中文检索词,检索PubMed、中国知网及万方数据库中的相关文献,最终纳入71篇文献进行综述。
结果与结论:3D打印聚酯支架凭借个性化结构设计、多级孔隙仿生构建及精准生物功能负载等优势,在骨修复领域展现出显著潜力。然而,材料疏水性导致的细胞黏附受限、降解产物的局部炎症风险以及打印精度对微血管结构的仿生限制,仍是亟待突破的关键瓶颈。未来的研究需整合材料改性(如分子质量梯度调控、拓扑优化)、智能化打印技术(如4D响应材料)与标准化临床评价体系,以推进功能化骨再生支架的临床转化。
https://orcid.org/0009-0005-4160-6951 (唐浩);https://orcid.org/0000-0002-0763-7827 (瓦庆德) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 3D打印, 生物可吸收聚酯, 骨再生, 骨缺损修复, 聚乳酸, 聚己内酯, 熔融沉积成型, 仿生支架, 临床转化

Abstract: BACKGROUND: Degradable polyester-based materials, exemplified by polylactic acid and polycaprolactone, have emerged as research hotspots in bone regeneration due to their controllable degradability, robust mechanical properties, and biocompatibility. However, the inherent hydrophobicity of these materials, the acidic microenvironment of degradation byproducts, and the compatibility with traditional bone repair needs still need to be further optimized.
OBJECTIVE: To systematically investigate the compatibility between the physicochemical properties of polyester-based materials and 3D printing techniques, elucidate scaffold pore modulation, bioactive factor loading strategies, and degradation-regeneration synchronization mechanisms, and critically evaluate current technical bottlenecks and clinical translation barriers.
METHODS: Chinese and English search terms were “printing, three-dimensional, 3D printing, three-dimensional printing, additive manufacturing, bioprinting, biocompatible materials, absorbable implants, polyesters, bioabsorbable, bioresorbable, biodegradable, resorbable, polyester, PLA, polylactic acid, PGA, polyglycolic acid, PCL, polycaprolactone, bone regeneration, bone and bones, bone tissue engineering, bone regeneration, bone repair, osseous regeneration, bone defect, fracture healing, osteogenesis, tissue scaffolds, scaffold, 3D scaffold.” We searched for relevant literature in PubMed, CNKI, and WanFang databases. Finally, 71 articles were included for review.
RESULTS AND CONCLUSION: 3D-printed polyester scaffolds demonstrate remarkable potential in bone repair through personalized structural design, bionic multiscale porosity, and precise biofunctionalization. However, critical challenges persist: limited cell adhesion due to material hydrophobicity, localized inflammatory risks from degradation byproducts, and insufficient printing resolution for microvascular structure biomimicry. Future research should integrate material modifications (e.g., molecular weight gradient control and topological optimization), intelligent printing technologies (e.g., 4D-responsive materials), and standardized clinical evaluation frameworks to advance functionalized bone regeneration scaffolds toward clinical translation.


Key words: 3D printing, bioabsorbable polyesters, bone regeneration, bone defect repair, polylactic acid, polycaprolactone, fused deposition modeling, bioinspired scaffold, clinical translation

中图分类号: