[1] ZHANG J, CHEN L, WANG J, et al. Multisite captured copper ions via phosphorus dendrons functionalized electrospun short nanofbrous sponges for bone regeneration. Adv Funct Mater. 2023;33:2211237.
[2] ZHAO Y, CAI YF, WANG WK, et al. Periosteum-bone inspired hierarchical scaffold with endogenous piezoelectricity for neuro-vascularized bone regeneration. Bioact Mater. 2024;(24):339-353.
[3] DUTTA SD, JIN HX, MD M, et al. Tailoring osteoimmunity and hemostasis using 3D-Printed nano-photocatalytic bactericidal scaffold for augmented bone regeneration. Biomaterials. 2025;316:122991.
[4] KUNAL JR, SUN HL, FENG K, et al. Nanofibrous 3D scaffolds capable of individually controlled BMP and FGF release for the regulation of bone regeneration. Acta Biomater. 2024;190:50-63.
[5] LIN ZX, CHEN ZX, CHEN YW, et al. Hydrogenated silicene nanosheet functionalized scaffold enables immuno-bone remodeling. Exploration (Beijing). 2023;3(4):20220149.
[6] KOICHIRO HS, RYO K, AKIRA T, et al. Transformable Carbonate Apatite Chains as a Novel Type of Bone Graft. Adv Healthc Mater. 2024; 13(12):e2303245.
[7] AO Y, GUO YL, ZHANG YZ, et al. Hypoxia-Mimicking Mediated Macrophage-Elimination of Erythrocytes Promotes Bone Regeneration via Regulating Integrin αvβ3/Fe2+-Glycolysis-Inflammation. Adv Sci (Weinh). 2024;1:e2403921.
[8] HUANG L, ZHANG SH, BIAN MX, et al. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect. Acta Biomater. 2024;180:82-103.
[9] GUO QL, CHEN JJ, BU QQ, et al. Establishing stable and highly osteogenic hiPSC-derived MSCs for 3D-printed bone graft through microenvironment modulation by CHIR99021-treated osteocytes. Mater Today Bio. 2024;26:101111.
[10] ZHANG J, HUANG YR, WANG YP, et al. Construction of biomimetic cell-sheet-engineered periosteum with a double cell sheet to repair calvarial defects of rats. J Orthop Translat. 2022;38:1-11.
[11] CAI WJ, MAO SH, WANG Y, et al. An Engineered Hierarchical Hydrogel with Immune Responsiveness and Targeted Mitochondrial Transfer to Augmented Bone Regeneration. Adv Sci (Weinh). 2024; 11:e2406287.
[12] XIAO JH, ZHANG ZB, LI JH, et al. Bioinspired polysaccharide-based nanocomposite membranes with robust wet mechanical properties for guided bone regeneration. Natl Sci Rev. 2024; 11(3):nwad333.
[13] FENG C, XUE JM, YU XP, et al. Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration. Acta Biomater. 2021; 119:419-431.
[14] ZHUANG Y, LIU QC, JIA GZ, et al. A Biomimetic Zinc Alloy Scaffold Coated with Brushite for Enhanced Cranial Bone Regeneration. ACS Biomater Sci Eng. 2021;7(3):893-903.
[15] WANG JS, CHEN GB, CHEN ZM, et al. Current strategies in biomaterial-based periosteum scaffolds to promote bone regeneration: A review. J Biomater Appl. 2023;37(7):1259-1270.
[16] EUGEN G, CLAUS M, ANNA-MARIA S, et al. Degradation of 3D-printed magnesium phosphate ceramics in vitro and a prognosis on their bone regeneration potential. Bioact Mater. 2022;19:376-391.
[17] SIMUNOVIC F, FINKENZELLER G. Vascularization strategies in bone tissue engineering. Cells .2021;10(7):1749.
[18] YAN CP, ZHANG PR, QIN QW, et al. 3D-printed bone regeneration scaffolds modulate bone metabolic homeostasis through vascularization for osteoporotic bone defects. Biomaterials. 2024; 311:122699.
[19] WU XY, NI S, DAI T, et al. Biomineralized tetramethylpyrazine-loaded PCL/gelatin nanofibrous membrane promotes vascularization and bone regeneration of rat cranium defects. J Nanobiotechnology. 2023;21(1):423.
[20] LIU JL, ZHOU ZZ, HOU MZ, et al. Capturing cerium ions via hydrogel microspheres promotes vascularization for bone regeneration. Mater Today Bio. 2024;24:25:100956.
[21] NAMBIAR J, JANA S, NANDI SK. Strategies for Enhancing Vascularization of Biomaterial-Based Scaffold in Bone Regeneration. Chem Rec. 2022; 22(6):e202200008.
[22] LI G, GAO F, YANG D, et al. ECM-mimicking composite hydrogel for accelerated vascularized bone regeneration. Bioact Mater. 2024;42: 241-256.
[23] CHEN WK, SHENG SH, TAN K, et al. Injectable hydrogels for bone regeneration with tunable degradability via peptide chirality modification. Mater Horiz. 2024;11(18):4367-4377.
[24] ZHOU LQ, CHEN DH, WU RC, et al. An injectable and photocurable methacrylate-silk fibroin/nano-hydroxyapatite hydrogel for bone regeneration through osteoimmunomodulation. Int J Biol Macromol. 2024;263(Pt 1):129925.
[25] WU QJ, HU LW, YAN R, et al. Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration. Bone Res. 2022;10(1):55.
[26] LIU LJ, ZHANG ZY, AIMAI JM, et al. Strontium-Incorporated Carbon Nitride Nanosheets Modulate Intracellular Tension for Reinforced Bone Regeneration. Nano Lett. 2022;22(23):9723-9731.
[27] HUANG JH, WEI JW, XIA X, et al. A sequential macrophage activation strategy for bone regeneration: A micro/nano strontium-releasing composite scaffold loaded with lipopolysaccharide. Mater Today Bio. 2024;26:101063.
[28] MIAO AF, LI QS, TANG GL, et al. Alginate-containing 3D-printed hydrogel scaffolds incorporated with strontium promotes vascularization and bone regeneration. Int J Biol Macromol. 2024;273(Pt 1):133038.
[29] NADI A, KHODAEI M, JAVDANI M, et al. Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration. Int J Biol Macromol. 2022; 219:1319-1336.
[30] ANWAR A, KANWAL Q, SADIQA A, et al. Synthesis and Antimicrobial Analysis of High Surface Area Strontium-Substituted Calcium Phosphate Nanostructures for Bone Regeneration. Int J Mol Sci. 2023; 24(19):14527.
[31] BAHEIRAEI N, EYNI H, BAKHSHI B, et al. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Sci Rep. 2021;22;11(1):8745.
[32] ZHAO YN, SUN W, WU XY, et al. Janus Membrane with Intrafibrillarly Strontium-Apatite-Mineralized Collagen for Guided Bone Regeneration. ACS Nano. 2024;18(9):7204-7222.
[33] CHEN S, CHENG DW, WEIMIN BAO WM, et al. Polydopamine-Functionalized Strontium Alginate/Hydroxyapatite Composite Microhydrogel Loaded with Vascular Endothelial Growth Factor Promotes Bone Formation and Angiogenesis. ACS Appl Mater Interfaces. 2024;16(4):4462-4477.
[34] HOLDEN P, NAIR LS. Deferoxamine: An Angiogenic and Antioxidant Molecule for Tissue Regeneration. Tissue Eng Part B Rev. 2019;25(6): 461-470.
[35] SHEN HJ, ZHANG C, MENG Y, et al. Biomimetic Hydrogel Containing Copper Sulfide Nanoparticles and Deferoxamine for Photothermal Therapy of Infected Diabetic Wounds. Adv Healthc Mater. 2024;13(8): e2303000.
[36] SHEN HJ, MA Y, QIAO Y, et al. Application of Deferoxamine in Tissue Regeneration Attributed to Promoted Angiogenesis. Molecules. 2024; 29;29(9):2050.
[37] WANG RK, ZHA XJ, CHEN JC, et al. Hierarchical Composite Scaffold with Deferoxamine Delivery System to Promote Bone Regeneration via Optimizing Angiogenesis. Adv Healthc Mater. 2024;20:e2304232.
[38] ZENG YW, HUANG C, DUAN DM, et al. Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect. Acta Biomater. 2022;153:108-123.
[39] LIU Z, HUANG LZ, QI L, et al. Activating Angiogenesis and Immunoregulation to Propel Bone Regeneration via Deferoxamine-Laden Mg-Mediated Tantalum Oxide Nanoplatform. ACS Appl Mater Interfaces. 2024;16(19):24384-24397.
[40] XU DL, GAN KF, WANG Y, et al. A Composite Deferoxamine/Black Phosphorus Nanosheet/Gelatin Hydrogel Scaffold for Ischemic Tibial Bone Repair. Int J Nanomedicine. 2022;17:1015-1030.
[41] LIU H, LI K, YI DL, et al. A Composite Deferoxamine/Black Phosphorus Nanosheet/Gelatin Hydrogel Scaffold for Ischemic Tibial Bone Repair. J Funct Biomater. 2024;15(4):112.
[42] TIAN S, MEI JW, ZHANG LS, et al. Multifunctional Hydrogel Microneedle Patches Modulating Oxi-inflamm-aging for Diabetic Wound Healing. Small. 2024;3:e2407340.
[43] ZHANG P, YANG JH, WANG ZY, et al. An injectable self-lubricating supramolecular polymer hydrogel loaded with platelet lysate to boost osteoarthritis treatment. J Control Release. 2024;376:20-36.
[44] LIU DG, WANG XY, GAO CY, et al. Biodegradable Piezoelectric-Conductive Integrated Hydrogel Scaffold for Repair of Osteochondral Defects. Adv Mater. 2024;13:e2409400.
[45] NUNES LA, LUCIENE M, ROSSE O, et al. High ferritin is associated with liver and bone marrow iron accumulation: Effects of 1-year deferoxamine treatment in hemodialysis-associated iron overload. PLoS One. 2024;19(8):e0306255.
[46] LI SB, WANG XM, CHEN J, et al. Calcium ion cross-linked sodium alginate hydrogels containing deferoxamine and copper nanoparticles for diabetic wound healing. Int J Biol Macromol. 2022;202:657-670.
|