中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (24): 3885-3889.doi: 10.12307/2024.617

• 骨与关节图像与影像 bone and joint imaging • 上一篇    下一篇

Micro-CT分析跟骨内骨小梁分布及结构特征

张凤珍1,孙瑞芬2,李梓瑜1,王  星3,李  琨1,李志军1,张少杰1   

  1. 内蒙古医科大学,1基础医学院,3数字医学中心,内蒙古自治区呼和浩特市   010110;2内蒙古医科大学第二附属医院,内蒙古自治区呼和浩特市   010110
  • 收稿日期:2023-06-21 接受日期:2023-08-07 出版日期:2024-08-28 发布日期:2023-11-21
  • 通讯作者: 张少杰,医学博士,教授,内蒙古医科大学基础医学院,内蒙古自治区呼和浩特市 010110
  • 作者简介:张凤珍,1988年生,内蒙古自治区兴和县人,汉族,内蒙古医科大学在读硕士,主治医师,讲师,主要从事解剖和放射医学方面的研究。
  • 基金资助:
    内蒙古自治区教育厅科技领军人才和创新团队建设项目(NMGIRT2307),项目负责人:张少杰;内蒙古医科大学校级重点项目(YKD202ZD007),项目负责人:张少杰;内蒙古自治区蒙医药协调创新中心科研项目(MYYXTYB202101),项目负责人:张少杰;内蒙古自治区卫生健康科技计划项目(202201219),项目负责人:张少杰;内蒙古医科大学青年领创团队项目(QNLC-2020025),项目负责人:张少杰;国家自然科学基金 (81660358), 项目负责人:张少杰;内蒙古自治区自然科学基金资助项目 (2019MS08017),项目负责人:张少杰;国家自然科学基金 (81860382),项目负责人:王星;国家自然科学基金 (81860383),项目负责人:李志军;内蒙古自治区自然科学基金资助项目(2020MS03061),项目负责人:王星;内蒙古自治区自然科学基金资助项目(2020LH08021),项目负责人:李志军

Micro-CT analysis of distribution and structural characteristics of bone trabeculae in the calcaneus

Zhang Fengzhen1, Sun Ruifen2, Li Ziyu1, Wang Xing3, Li Kun1, Li Zhijun1, Zhang Shaojie1   

  1. 1School of Basic Medicine, 3Digital Medicine Center, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia Autonomous Region, China; 2Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia Autonomous Region, China
  • Received:2023-06-21 Accepted:2023-08-07 Online:2024-08-28 Published:2023-11-21
  • Contact: Zhang Shaojie, MD, Professor, School of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia Autonomous Region, China
  • About author:Zhang Fengzhen, Master candidate, Attending physician, Lecturer, School of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia Autonomous Region, China
  • Supported by:
    Science and Technology Leading Talent and Innovation Team Construction Project of Inner Mongolia Autonomous Region Department of Education, No. NMGIRT2307 (to ZSJ); Key Campus Project of Inner Mongolia Medical University, No. YKD202ZD007 (to ZSJ); Research Project of Inner Mongolia Autonomous Region Mongolian Medicine Coordination and Innovation Center, No. MYYXTYB202101 (to ZSJ); Health Science and Technology Plan Project of Inner Mongolia Autonomous Region, No. 202201219 (to ZSJ); Youth Innovation Team Project of Inner Mongolia Medical University, No. QNLC-2020025 (to ZSJ); National Natural Science Foundation of China, No. 81660358 (to ZSJ); Natural Science Foundation of Inner Mongolia Autonomous Region, No. 2019MS08017 (to ZSJ); National Natural Science Foundation of China, No. 81860382 (to WX); National Natural Science Foundation of China, No. 81860383 (to LZJ); Natural Science Foundation of Inner Mongolia Autonomous Region, No. 2020MS03061 (to WX); Natural Science Foundation of Inner Mongolia Autonomous Region, No. 2020LH08021 (to LZJ)

摘要:


文题释义:

Micro-CT:为微计算机断层扫描(Micro Computed Tomography)的简写,是在1-100 μm分辨率上显示骨骼的X射线成像方法,可对骨的内部微观结构进行精准测量。
骨小梁:位于骨的骨松质内,走行、密度、厚度、间隙及数量等微观结构复杂,其微观结构与骨骼的功能相适应。


背景:跟骨位于足的后下部,受力较大。跟骨外形复杂且不规则,外周有较薄的皮质骨包绕,内部充满大量的骨小梁,探讨骨小梁的微观结构、走行及分布特征有助于提高对跟骨骨折的认识。

目的:采用微计算机断层扫描仪(Micro-CT)扫描跟骨标本获得其影像资料,对其内部骨小梁结构进行分析,探讨跟骨内骨小梁的形态、分布及结构特征。
方法:采用Micro-CT连续扫描干燥成人跟骨标本,扫描后获得影像图像,将其以DICOM格式存储。导入影像资料到Hiscan Analyzer软件,显示清晰完整的成人跟骨矢状面、冠状面、水平面的图像,逐层观察骨小梁的走行,依据骨小梁走行特点将跟骨矢状面分为6个部分,在以7 mm为标准的相同厚度下,每个部分选择1个49 mm2等面积的兴趣区,三维重建后获得跟骨及骨小梁的立体微观结构,二值化后运用软件计算感兴趣区域内骨小梁的体积分数、表面密度、骨小梁厚度、骨小梁间隙和骨小梁数量参数。

结果与结论:①跟骨表面皮质层很薄,内部充满大量骨松质,在Gissane角的骨皮质明显增厚;②跟骨上部的骨小梁体积分数大于跟骨下部前端、中和三角区、跟骨下后部、跟骨结节部、跟骨底部,跟骨结节部的骨小梁体积分数大于跟骨下部前端、中和三角区、跟骨下后部、跟骨底部;跟骨结节部的骨小梁表面密度大于跟骨下部前端、中和三角区、跟骨底部,跟骨上部、跟骨下后部的骨小梁表面密度大于中和三角区;跟骨上部的骨小梁厚度大于跟骨结节部;中和三角区的骨小梁间隙大于跟骨上部、跟骨结节部;跟骨结节部的骨小梁数量大于中和三角区;③中和三角区主要分布杆状骨小梁,骨小梁表面密度最小、体积分数较小、骨小梁间隙最大;该部位骨质较疏松,受到高冲击力时抗压缩能力差,骨小梁最先发生断裂,是易发生骨折的部位。

https://orcid.org/0009-0001-6528-4142 (张凤珍) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: MicroCT, 跟骨, 骨小梁, 形态特征, 骨折

Abstract: BACKGROUND: The calcaneus is located in the lower posterior part of the foot and is heavily stressed. Calcaneus is complex and irregular in shape, surrounded by thin cortical bone and filled with a large number of trabeculae. The study of the microstructure, movement, and distribution of trabeculae is helpful to improve the understanding of calcaneus fracture.
OBJECTIVE: The image data of calcaneus were obtained by scanning the calcaneus specimens with micro-computed tomography, and the structure of trabecular bone in calcaneus was analyzed to explore the morphology, distribution and structural characteristics of trabecular bone in calcaneus.
METHODS: Dry adult calcaneus specimens were continuously scanned by micro-computed tomography, and the images were obtained after scanning and stored in DICOM format. Image data were imported into Hiscan Analyzer software to display clear and complete images of the sagittal plane, coronal plane, and the horizontal plane of the adult calcaneus. The trabecular movement of bone was observed layer by layer. According to the trabecular movement characteristics, the sagittal plane of the calcaneus was divided into six parts. A 49-mm2 region of interest was selected for each part at the same thickness as 7 mm. The three-dimensional microstructure of calcaneus and trabecular bone was obtained after three-dimensional reconstruction. After binarization, the volume fraction, surface density, trabecular thickness, trabecular space, and trabecular number parameters of the trabecular bone in the region of interest were calculated by software.
RESULTS AND CONCLUSION: (1) The cortical layer of the calcaneus was very thin and filled with a large amount of cancellous bone, and the cortical layer of the horn of Gissane was obviously thickened. (2) The trabecular volume fraction in the upper part of the calcaneus was greater than that in the anterior part of the lower part of the calcaneus, the central triangle, the posterior part of the lower part of the calcaneus, and the base of the calcaneus, and the trabecular volume fraction in the tubercle of the calcaneus was greater than that in the anterior part of the lower part of the calcaneus, the central triangle, the posterior part of the lower part of the calcaneus, and the base of the calcaneus. The surface density of the trabecular bone in the tubercle of the calcaneus was higher than that in the front of the lower calcaneus, the middle triangle area, and the bottom of calcaneus, and the surface density of the trabecular bone in the upper part of calcaneal bone, and the lower part of the calcaneus was higher than that in the middle triangle area. The thickness of the trabecular bone in the upper part of the calcaneus was greater than that in the tubercle of the calcaneal bone. The bone trabecular space in the middle triangle was larger than that in the upper part of the calcaneus and calcaneal tubercles. The number of bone trabeculae in the calcaneal tubercles was greater than that in the middle triangle area. (3) These results indicate that the trabeculae of rod bone were mainly distributed in the middle triangle area. The surface density of trabeculae was the smallest, the volume fraction was smaller, and the space between trabeculae was the largest. This part of the bone is relatively loose. The compression resistance is poor when subjected to high impact. The trabecular bone fractures first occur, which is a prone site for fractures.

Key words: Micro-CT, calcaneus, bone trabeculae, morphological characteristics, fracture

中图分类号: