中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (24): 3773-3777.doi: 10.12307/2024.605

• 骨与关节生物力学 bone and joint biomechanics •    下一篇

弯矩作用下姿势性脊柱后凸的生物力学响应

王  磊,王晨艳,郭  媛,李晓娜,陈维毅   

  1. 太原理工大学生物医学工程学院,山西省太原市   030024
  • 收稿日期:2023-06-10 接受日期:2023-07-15 出版日期:2024-08-28 发布日期:2023-11-20
  • 通讯作者: 陈维毅,博士,教授,太原理工大学生物医学工程学院,山西省太原市 030024
  • 作者简介:王磊,男,1998年生,山西省壶关县人,汉族,太原理工大学生物医学工程在读硕士,主要从事骨肌系统生物力学相关研究。
  • 基金资助:
    国家自然科学基金(11632013),项目负责人:陈维毅

Biomechanical response of postural kyphosis under the action of bending moments

Wang Lei, Wang Chenyan, Guo Yuan, Li Xiaona, Chen Weiyi   

  1. College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • Received:2023-06-10 Accepted:2023-07-15 Online:2024-08-28 Published:2023-11-20
  • Contact: Chen Weiyi, PhD, Professor, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • About author:Wang Lei, Master candidate, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 11632013 (to CWY)

摘要:


文题释义:

姿势性脊柱后凸:通常表现为患者胸椎矢状面过度后凸,且在X射线片上没有观察到椎骨结构异常,而胸椎过度后凸会导致患者产生驼背,不仅影响美观,还会导致背部疼痛、呼吸受限,可能会造成不良影响。
Cobb角:是指脊柱弯曲节段的上端椎椎体上缘与下端椎椎体下缘所形成的交角,通常作为判断脊柱后凸程度的标准。


背景:关于脊柱后凸的生物力学研究大多集中在躯干肌肉力量以及矢状面平衡等方面,关于脊柱后凸过程中脊柱内部的生物力学响应鲜有报道。

目的:通过模拟姿势性脊柱后凸过程,探究姿势性脊柱后凸过程中脊柱的生物力学响应。
方法:建立正常人胸腰段三维有限元模型(T1-S1节段),通过在T1、T6、T12椎骨上施加三点力系的方式施加1.15-11.52 N·m共10组等距递增的弯曲载荷,模拟正常人姿势性脊柱后凸过程,分析载荷与Cobb角关系和弯曲载荷作用下胸椎、肋骨、椎间盘的生物力学响应。

结果与结论:①姿势性脊柱后凸过程中,T1-T12节段Cobb角与载荷大小呈线性关系;②胸椎、肋骨和椎间盘上的最大应力随着载荷的增加而增加;③在11.52 N·m力矩作用下,胸椎、肋骨和椎间盘的最大应力分别出现在T6椎骨的前侧、第10对肋骨的肋头处和T5-T6节段椎间盘的右后侧;④结果提示,姿势性脊柱后凸会导致胸椎、肋骨和椎间盘上应力增大,其中T6椎骨前侧、第10对肋骨的肋头处与T5-T6节段椎间盘前后侧应力增加最明显,可能会增加胸椎、肋骨和椎间盘的损伤风险,为脊柱后凸矫形器的设计提供生物力学依据。

https://orcid.org/0000-0003-1702-5653 (陈维毅) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 姿势性脊柱后凸, 有限元分析, 生物力学, 脊柱, Cobb角

Abstract: BACKGROUND: Most of the biomechanical studies on kyphosis have focused on trunk muscle strength and sagittal plane balance, and little has been reported on the biomechanical response within the spine during kyphosis.
OBJECTIVE: To investigate the biomechanical response of the spine during postural kyphosis by simulating the process of postural kyphosis.
METHODS: A three-dimensional finite element model of the normal thoracolumbar segment (T1-S1 segment) was established by using the finite element method. 10 groups of pure bending loads from 1.15-11.52 N·m were applied using a three-point force system on T1, T6, and T12 vertebrae to simulate the process of postural kyphosis in normal humans. The relationship between the loads and Cobb angle and the biomechanical responses of vertebrae, ribs, and intervertebral discs were analyzed. 
RESULTS AND CONCLUSION: (1) During postural kyphosis, the Cobb angle size of T1-T12 segments was linearly related to the load size. (2) The maximum stresses on the vertebrae, ribs, and intervertebral discs increased with increasing load. (3) Under the action of 11.52 N·m moment, the maximum stresses on the vertebral body, ribs, and intervertebral disc were found in the front of the T6 vertebral body, the rib head of the 10th pair of ribs, and the right posterior side of the intervertebral disc of the T5-T6 segments. (4) The results of this study suggest that postural kyphosis leads to increased stress on the vertebrae, ribs, and discs, with the most significant increase in stress on the anterior side of the T6 vertebrae, at the rib head of the 10th pair of ribs, and on the anterior side of the disc at the T5-T6 segment, as well as on the posterior side, which may increase the risk of injury to the vertebrae, ribs, and discs, which provides a biomechanical basis for the design of kyphosis orthoses.

Key words: postural kyphosis, finite element analysis, biomechanics, spine, Cobb angle

中图分类号: