中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (9): 1336-1341.doi: 10.12307/2024.003

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

不同内植物修复单侧不稳定骨盆后环损伤的有限元及生物力学分析

梁  成1,2,3,张麟麒4,王  冠1,李  文1,段  可1,2,李  忠1,鲁晓波1,2,卓乃强1,2   

  1. 西南医科大学附属医院,1骨科,3临床医学研究中心,四川省泸州市   646000;2四川省骨科置入器械研发及应用技术工程实验室,四川省泸州市   646000;4四川绵阳四O四医院关节外科,四川省绵阳市   621000
  • 收稿日期:2023-01-05 接受日期:2023-02-20 出版日期:2024-03-28 发布日期:2023-07-25
  • 通讯作者: 鲁晓波,主任医师,西南医科大学附属医院骨科,四川省泸州市 646000;四川省骨科置入器械研发及应用技术工程实验室,四川省泸州市 646000 卓乃强,主任医师,西南医科大学附属医院骨科,四川省泸州市 646000;四川省骨科置入器械研发及应用技术工程实验室,四川省泸州市 646000
  • 作者简介:梁成,男,1993年生,四川省泸州市人,汉族,2019年西南交通大学毕业,硕士,助理工程师,主要从事骨科生物力学研究。
  • 基金资助:
    泸州-西南医科大合作项目(2020LZXNYDF02),项目负责人:王冠;泸县-西南医科大合作项目(2020LXXNYKD-01),项目负责人:鲁晓波

Finite element and biomechanical analysis of different implants in repair for unilateral unstable pelvic posterior ring injury

Liang Cheng1, 2, 3, Zhang Linqi4, Wang Guan1, Li Wen1, Duan Ke1, 2, Li Zhong1, Lu Xiaobo1, 2, Zhuo Naiqiang1, 2   

  1. 1Department of Orthopedics, 3Clinical Medicine Research Center, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China; 2Sichuan Provincial Laboratory of Orthopedic Implanted Device R&D and Application Technology Engineering, Luzhou 646000, Sichuan Province, China; 4Department of Joint Surgery, Sichuan Mianyang 404 Hospital, Mianyang 621000, Sichuan Province, China
  • Received:2023-01-05 Accepted:2023-02-20 Online:2024-03-28 Published:2023-07-25
  • Contact: Lu Xiaobo, Chief physician, Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China; Sichuan Provincial Laboratory of Orthopedic Implanted Device R&D and Application Technology Engineering, Luzhou 646000, Sichuan Province, China Zhuo Naiqiang, Chief physician, Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China; Sichuan Provincial Laboratory of Orthopedic Implanted Device R&D and Application Technology Engineering, Luzhou 646000, Sichuan Province, China
  • About author:Liang Cheng, Master, Assistant engineer, Department of Orthopedics, and Clinical Medicine Research Center, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China; Sichuan Provincial Laboratory of Orthopedic Implanted Device R&D and Application Technology Engineering, Luzhou 646000, Sichuan Province, China
  • Supported by:
    Luzhou-Southwest Medical University Cooperation Project, No. 2020LZXNYDF02 (to WG); Luxian County - Southwest Medical University Cooperation Project, No. 2020LXXNYKD-01 (to LXB)

摘要:


题释义:

骨盆后环损伤:是指骶髂关节周围韧带损伤或骶髂关节周围骨折,例如骶髂关节脱位、骨折脱位、骶骨骨折、骨盆不愈合/畸形愈合等,易造成骶髂关节不稳甚至脱位,临床中表现为疼痛不适或功能障碍。骶髂关节为微动关节,韧带损伤或骨折后骶髂关节活动自由度变大,影响轴向载荷的有效传递。骨盆后环对骨盆稳定性的影响更大,故对其修复的研究具有重大意义。
生物力学分析:是利用数学方法、物理力学理论、解剖学等技术分析人体活动中的力学问题,主要有仿真分析和试验测试等方法。仿真分析主要依靠Ansys、Abaqus、Anybody等计算机对模型进行有限元分析或刚体动力学分析。实验测试主要依靠力学测试设备、对应的实验夹具对模型对象进行力学测试。


背景:骨盆稳定性主要由骨盆后环决定及骶髂关节决定,车祸等高能量冲击带来的骨盆后环损伤及骶髂关节脱位病例逐年递增。手术治疗是最优方法,临床中存在多种内植物修复方式,但哪种治疗方式的生物力学性能最优仍有一定争议。

目的:对比前路双钢板、后路桥接钢板、拉力钉3种内植物修复单侧不稳定骨盆后环损伤的生物力学性能,为其临床治疗及骨盆新型拉力钉研发提供参考。
方法:①有限元仿真:利用Mimics、Wrap和SolidWorks分别建立正常骨盆、单侧后环损伤骨盆及其前路双钢板、后路桥接钢板、拉力钉修复模型,利用Ansys分析模型的应力和变形情况;②生物力学实验:用15个完整骨盆标本随机分为5组,分别为正常骨盆、单侧后环损伤骨盆及其前路双钢板、后路桥接钢板、拉力钉修复组,并用Instron E10000力学试验机进行力学测试。

结果与结论:①仿真分析结果显示,正常骨盆模型骶骨平均位移为0.174 mm,骶髂骨最大应力为10.51 MPa,应力分布均匀;单侧不稳定损伤骨盆模型骶骨平均位移最大,为0.267 mm,模型应力集中明显;3种修复模型骶骨平均位移都接近正常骨盆模型,拉力钉修复模型骶髂骨应力分布均匀;②力学实验结果显示,正常骨盆模型整体刚度为(226.38±4.18) N/mm,单侧不稳定损伤骨盆模型整体刚度最小为(130.02±2.19) N/mm,3种修复方式整体刚度和正常骨盆偏差都在±10%以内,修复效果明显;③仿真结果和力学实验结果相符;④从生物力学角度分析,拉力钉修复模型的生物力学状态与正常骨盆最接近,该种方式最佳;前路双钢板修复刚度过大,应力遮挡效果更显著;后路桥接钢板修复不能解决正常侧软组织的代偿效果,存在缺陷;该研究可为临床手术提供优选依据;⑤骨盆新型拉力钉应从拉力钉的角度进行改良,保留拉力钉良好的生物力学性能,同时附加其他优势性能,例如可用于骨质疏松骨盆等。

https://orcid.org/0000-0001-7350-4355 (梁成) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 不稳定骨盆后环损伤, 内植物, 拉力钉, 有限元分析, 生物力学

Abstract: BACKGROUND: The stability of the pelvis is mainly determined by the posterior pelvic ring and the sacroiliac joint. The posterior pelvic ring injury and the dislocation of the sacroiliac joint caused by high energy impacts such as car accidents increase year by year. Surgical treatment is the best method, and there are many kinds of endophytorepair methods in clinical practice, but which treatment method has the best biomechanical properties is still controversial.  
OBJECTIVE: To compare the biomechanical properties of three kinds of internal implants: anterior double plates, posterior bridging plate and tension nail in the repair of unilateral unstable pelvic posterior ring injury, to provide a reference for the clinical treatment and development of a new pelvic tension screw.
METHODS: (1) Finite element simulation: Mimics, Wrap and SolidWorks were used to establish normal pelvic model, unilateral injured pelvis model, and three kinds of internal implant repaired models (anterior double plates, posterior bridging plate and tension nail). Ansys was used to analyze the stress and deformation of the models. (2) Biomechanical test: A total of 15 intact pelvic specimens were randomly grouped into five groups, normal pelvic model, unilateral injured pelvis model, anterior double plates, posterior bridging plate and tension nail groups. The mechanical test was performed using an Instron E10000 testing machine.  
RESULTS AND CONCLUSION: (1) Simulation: In the normal pelvic model, the average displacement of the sacrum was 0.174 mm, and the maximum stress of the sacral iliac bone was 10.51 MPa, and the stress distribution was uniform. The mean sacral displacement of the unilateral injured pelvis model was 0.267 mm, and the stress concentration of the model was obvious. The mean displacement of the sacrum in the three repaired models was close to that in the normal pelvic model, and the stress distribution of the sacral iliac bone in the tension nail repaired model was uniform. (2) Mechanical test: The stiffness of the normal pelvic model was (226.38±4.18) N/mm, and that of the unilateral unstable pelvic model was the smallest (130.02±2.19) N/mm. The deviation of the normal pelvic model stiffness and the three repaired models’ stiffness were all within (±10%), and the repair effect was obvious. (3) The simulation results were in agreement with the experimental results. (4) The biomechanics of the tension nail repaired model was the most similar to that of the normal pelvis, and this method was the best. The repairing stiffness of the anterior double plate was too large, and the stress shielding effect was more significant. The posterior bridging plate repair could not solve the compensatory effect of the normal side soft tissue and had defects. This study provides an optimal basis for clinical surgery. (5) The new type of pelvic tension nail should be improved from the point of view of the tension nail to retain the good biomechanical properties of the tension nail, while adding other advantages, such as being used for the osteoporotic pelvis.

Key words: unstable pelvic injury, internal implant, tension nail, finite element analysis, biomechanics

中图分类号: