中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (8): 1277-1282.doi: 10.12307/2024.214

• 组织构建与生物力学 tissue construction and biomechanics • 上一篇    下一篇

三维有限元分析不同特征骨组织中应力的分布规律

霞黑达·依拉尔江,尼加提·吐尔逊,热依拉·库尔班,白布加甫·叶力思,陈  欣   

  1. 新疆医科大学第二附属医院口腔科,新疆维吾尔自治区乌鲁木齐市  830063
  • 收稿日期:2022-12-05 接受日期:2023-02-08 出版日期:2024-03-18 发布日期:2023-07-19
  • 通讯作者: 尼加提·吐尔逊,主任医师,副教授,新疆医科大学第二附属医院口腔科,新疆维吾尔自治区乌鲁木齐市 830063
  • 作者简介:霞黑达·依拉尔江,女,1994年生,新疆维吾尔自治区塔城市人,维吾尔族,新疆医科大学在读硕士,主要从事口腔种植修复学研究。
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目(2016D01C192),课题名称:维药买朱尼对种植体周围炎龈沟液中IL-β1以及骨界面改建影响的实验研究,项目负责人:尼加提·吐尔逊

Three-dimensional finite element analysis of the distribution pattern of stress in bone tissues with different characteristics

Xiaheida·Yilaerjiang, Nijiati·Tuerxun, Reyila·Kuerban, Baibujiafu·Yelisi, Chen Xin   

  1. Department of Stomatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang Uygur Autonomous Region, China
  • Received:2022-12-05 Accepted:2023-02-08 Online:2024-03-18 Published:2023-07-19
  • Contact: Nijiati·Tuerxun, Chief physician, Associate professor, Department of Stomatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang Uygur Autonomous Region, China
  • About author:Xiaheida·Yilaerjiang, Master candidate, Department of Stomatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang Uygur Autonomous Region, China
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region, No. 2016D01C192 (to NT)

摘要:


文题释义:

皮质骨:又称为骨密质,其质地致密,抗压强度、抗扭曲性能均较强,主要位于骨的外层,内层主要是松质骨;皮质骨中骨板呈同心圆排列,其包饶的小腔内环绕着中央哈佛管,其内包含血管及神经,骨组织从中得到营养。
位移:组织在力学环境下会发生空间位置的改变,任意一点位移是指该点从最初位置至最末位置的空间距离和方向,位移是矢量。


背景:关于皮质骨厚度的改变对位移值及等效应力值影响的三维有限元研究较少。

目的:通过三维有限元方法分析不同皮质骨厚度对种植体-骨界面位移及应力分布的影响,为口腔种植治疗提供一定的建议。
方法:选取1例拟行下颌第一磨牙种植修复男性患者(27岁)的锥形束CT影像资料,首先在Mimics 13.0软件建立下颌骨模型,然后导入Solid works 2022软件中,根据相关产品信息绘制出锥形种植体(4.1 mm×10 mm)及上部修复体模型,根据不同皮质骨厚度(2.5,2.0,1.5,1.0 mm)获得皮质骨模型,分别命名为D1,D2,D3,D4,将所有模型导入ANSYS Workbench 2021软件中并交叉组合,最后对4组模型静态载荷,分析各组模型受力后的应力分布。

结果与结论:①等效应力峰值在松质骨最小,在上部修复体即基台-种植体连接处最高;②整体等效应力峰值随着皮质骨厚度减小而增高;③基台处等效应力峰值会随着皮质骨厚度减小而增大,类似的解释也适用于其他种植修复部件;④骨组织和种植体中应力峰值随着皮质骨厚度的增加而增加,并且在D1,D2,D3中种植体应力峰值大于骨组织,D4相反。

https://orcid.org/0000-0002-7438-7450(霞黑达·依拉尔江)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 锥形种植体, 有限元分析, 有限元模型, 骨密度, 皮质骨

Abstract: BACKGROUND: Less is reported on the influence of cortical bone thickness on displacement and equivalent stress.
OBJECTIVE: To analyze the influence of cortical bone thickness on the maximum displacement and equivalent stress at the implant-bone interface through a three-dimensional finite element method, thereby providing some suggestions for oral implantation.
METHODS: In this experiment, we selected the cone-shaped CT image data of a patient who was scheduled for mandibular first molar implant restoration. First, we established a mandibular model in Mimics13 software, and then imported it into Solid works 2022 software. According to the related product information, we drew the cone-shaped implant (4.1 mm×10 mm) and the upper prosthesis model. Cortical bone models were obtained according to different cortical bone thicknesses (2.5, 2.0, 1.5, 1.0 mm) and named D1, D2, D3, and D4, respectively. All the models were imported into ANSYS Workbench 2021 software and cross-combined. Finally, we applied vertical and oblique loads to the four groups of models, and analyzed the stress of the models in each group.
RESULTS AND CONCLUSION: The peak equivalent stress is lowest in the cancellous bone and highest in the upper prosthesis, that is, at the abutment-implant junction. The peak stress increases with the decrease of cortical bone thickness. The peak stress of the abutment increases with the decrease of cortical bone thickness, and a similar explanation can also be applied to the other implant restoration components. The peak stress in bone tissue and implants increases with the increase of cortical bone thickness. In models D1, D2, D3, the peak stress in implants is higher than that in bone tissue, but the results are reversed in D4.

Key words: conical implant, finite element analysis, finite element model, bone mineral density, cortical bone

中图分类号: