中国组织工程研究 ›› 2024, Vol. 28 ›› Issue (15): 2452-2460.doi: 10.12307/2024.255
• 生物材料综述 biomaterial review • 上一篇
钟思扬1,廖 晴1,周星宇1,李先楹1,卫晶晶2,杨 琳2
收稿日期:
2023-02-20
接受日期:
2023-03-25
出版日期:
2024-05-28
发布日期:
2023-09-23
通讯作者:
杨琳,博士,副教授,遵义医科大学珠海校区人体解剖学教研室,广东省珠海市 519041
作者简介:
钟思扬,女,2002年生,广东省江门市人,汉族,主要从事骨组织工程和神经功能重建研究。
廖晴,女,2002年生,广西壮族自治区玉林市人,汉族,主要从事骨组织工程方面的研究。
基金资助:
Zhong Siyang1, Liao Qing1, Zhou Xingyu1, Li Xianying1, Wei Jingjing2, Yang Lin2
Received:
2023-02-20
Accepted:
2023-03-25
Online:
2024-05-28
Published:
2023-09-23
Contact:
Yang Lin, PhD, Associate professor, Department of Human Anatomy, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, Guangdong Province, China
About author:
Zhong Siyang, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, Guangdong Province, China
Liao Qing, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, Guangdong Province, China
Supported by:
摘要:
文题释义:
骨组织工程:通过结合种子细胞、组织工程材料及物理化学因子等要素来调控骨组织微环境的变化以诱导新的功能性骨再生,提升或替代受损骨组织器官的生物学功能。
背景:骨组织缺损是目前骨科最为常见的疾病之一,并且该疾病现行的治疗手段均存在一定的不足。组织工程的发展为骨缺损修复带来了新的希望,通过调控缺损部位生物活性物质的释放和血管化、神经化的进程可以有效改善骨组织微环境并促进骨整合,是大尺寸骨缺损修复最具发展潜力的研究思路。
目的:从生物活性物质、血管再生和神经化对骨微环境变化3个方面的影响,探讨近年来调控骨微环境变化在骨缺损修复中的研究进展,为治疗大尺寸骨缺损提供新的思路和策略。结果与结论:①骨微环境是诱导骨组织干细胞生长分化的重要保障,其主要包括骨组织种子的细胞外基质及细胞间的相互作用所需要的生物化学因子、局部血液循环网络和周围的神经组织。②骨缺损修复是一个分为多个阶段的连续过程,这些阶段相互重叠,由多种细胞因子介导,同一种细胞因子在一个或多个愈合阶段可以产生相互协同或拮抗的作用。③新生血管再生是启动骨修复的关键,新生血管不仅为骨修复提供了必需的营养物质、成骨细胞和生长因子,同时更是修复细胞进入损伤区的通道。④除了调控血管诱导因子的释放种类、剂量及时效性等因素以实现血运重建外,多因子差异性释放递送系统的研究和基因转移技术的应用将是未来解决大面积骨缺损的研究方向。⑤神经肽类物质能与相关受体结合并作用于特定的信号通路,通过多种途径引导血管的生长及影响骨愈合、骨再生及成骨与破骨之间的平衡。⑥在建立神经化的组织工程骨时,骨组织微环境变化与神经调控的作用是双向的。骨基质中的细胞因子可以通过血神经屏障参与神经元的信号传导通路。而由神经胶质细胞分泌的神经肽类物质能作用于骨微环境,影响骨愈合、骨再生及成骨与破骨之间的平衡。⑦关于生物活性物质和血管化、神经化的进程对骨微环境的调控还存在诸多尚待解决的问题,如细胞因子在人体内弥散和降解速度过快而易丧失活性、血管生成相关生长因子的时效性及空间分布、通过机体回馈调节机制建立神经化等诸多问题,还需后续研究不断完善。
https://orcid.org/0000-0003-3884-6522 (钟思扬);https://orcid.org/0000-0003-4348-0908 (廖晴);https://orcid.org/0000-0003-1372-8677 (杨琳)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
钟思扬, 廖 晴, 周星宇, 李先楹, 卫晶晶, 杨 琳. 骨微环境对组织工程骨再生过程的影响[J]. 中国组织工程研究, 2024, 28(15): 2452-2460.
Zhong Siyang, Liao Qing, Zhou Xingyu, Li Xianying, Wei Jingjing, Yang Lin. Influence of bone microenvironment on regeneration process of tissue-engineered bone[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(15): 2452-2460.
[1] XU SF, YU XC, XU M, et al. Successful management of a childhood osteosarcoma with epiphysiolysis and distraction osteogenesis. Curr Oncol. 2014;21(4):e658-e662. [2] RAPOSO-AMARAL CE, BUENO DF, ALEMIDA AB, et al. Is bone transplantation the gold standard for repair of alveolar bone defects? J Tissue Eng. 2014;5: 2041731413519352. [3] GOODAM SB, PAJARINEN J, Yao Z, et al. Inflammation and bone repair: from particle disease to tissue regeneration. Front Bioeng Biotechnol. 2019;7:230. [4] HANKENSO KD, GAGNE K, SHAUGHNESSY M. Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev. 2015;94:3-12. [5] SCADDEN DT. The stem-cell niche as an entity of action. Nature. 2006;441 (7097):1075-1079. [6] DE JONG MME, KELLERMAYER Z, PAPAZIAN N, et al. The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nat Immunol. 2021;22(6):769-780. [7] 夏玉城,陶树清.低氧诱导因子和脯氨酸羟化酶在骨发育和骨稳态中的作用[J].实用骨科杂志,2020,26(4):339-342. [8] 谢玉,周诺.Ⅰ型胶原诱导骨髓间充质干细胞及成骨细胞的成骨分化机制[J].中国组织工程研究,2018,22(21):3417-3423. [9] MANCUSO P, RAMAN S, GLYNN A, et al. Mesenchymal stem cell therapy for osteoarthritis: the critical role of the cell secretome. Front Bioeng Biotechnol. 2019;7:9. [10] 许克惠,李娇娇,李香玉,等.光固化3D打印软组织材料的性能研究进展[J].中国生物医学工程学报,2019,38(5):628-635. [11] LAPNER P, BOULIANE M, POLLOCK JW, et al. Intraoperative channeling in arthroscopic rotator cuff repair: a multicenter randomized controlled trial. Am J Sports Med. 2023;51(2):323-330. [12] NAKANO K, MURATA K, OMOKAWA S, et al. Promotion of osteogenesis and angiogenesis in vascularized tissue-engineered bone using osteogenic matrix cell sheets. Plast Reconstr Surg. 2016;137(5):1476-1484. [13] CASANOVA MR, OLIVEIRA C, FERNANDES EM, et al. Spatial immobilization of endogenous growth factors to control vascularization in bone tissue engineering. Biomater Sci. 2020;8(9):2577-2589. [14] GREENHILL C. Bone. Formation of blood vessels in bone maturation and regeneration. Nat Rev Endocrinol. 2014;10(5):250. [15] FERRETTI C, RIPAMONTI U. Human segmental mandibular defects treated with naturally derived bone morphogenetic proteins. J Craniofac Surg 2002;13(3):434-444. [16] 武永刚,陈君长,王坤正.血管内皮细胞生长因子在骨折愈合过程中的表达[J].西安医科大学学报,2001,22(1):51-53, 61. [17] 张丽蓉,夏文杰,项鹏,等.体外定向诱导人骨髓间质干细胞分化为成骨细胞的研究[J].中国病理生理杂志,2002,18(7):745-748. [18] 丁生乐,孙正义.成纤维细胞生长因子对大鼠骨髓基质细胞诱导成骨的影响[J].第四军医大学学报,2003,24(2):119-122. [19] 彭磊,万明习,梁芳慧,等.骨髓成骨细胞在碱热处理的磷灰石涂层钛表面的分化增殖研究(英文)[J].稀有金属材料与工程,2004,33(10): 1018-1022. [20] 钟刚,裴福兴,樊瑜波,等.血管内皮生长因子基因转染促进成骨细胞的成骨活性(英文)[J].中国临床康复,2005,9(22):250-252. [21] 黄晓兵,刘霆,孟文彤,等.骨髓间充质干细胞分化的成骨细胞支持脐血造血干祖细胞的研究[J].中国实验血液学杂志,2006,14(3):552-556. [22] 刘勇,李小飞,程庆书,等.异体移植气管中骨形态发生蛋白诱导软骨再生的实验[J].中国临床康复,2006,10(1):91-93. [23] 智伟,邓力,杨志明,等.成骨细胞参与骨髓造血微环境的构建及发挥调控作用[J].中国修复重建外科杂志,2007,21(5):517-522. [24] ZHENG ZH, ZHU P, WANG YH, et al. In vitro induction of directional differentiation of bone marrow mesenchymal stem cells towards chondrocytes. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2005;21(1):79-82. [25] 李宁,吴桂英,李启明,等.不同氧浓度微环境对大鼠骨髓间充质干细胞成骨及成脂肪分化的影响[J].重庆医学,2009,38(19):2448-2450. [26] 穆晓红,赵子义,徐林,等.纳米材料支架与骨髓间充质干细胞构建纳米骨修复兔股骨头坏死[J].中国组织工程研究与临床康复,2010,14(51): 9582-9586. [27] 邓皖利,吴宏忠,徐文,等.阿胶补血活性组分对环磷酰胺所致贫血小鼠骨髓造血微环境的影响[J].时珍国医国药,2011,22(10):2542-2544. [28] 刘铁,苏庆军,藏磊,等.股骨头缺血性坏死与局部微环境瘦素表达的相关性研究[J].中国修复重建外科杂志,2012,26(11):1319-1323. [29] 陈玉玺,王晓莉,牟青杰,等.骨髓间充质干细胞对脑缺血大鼠星形胶质细胞影响的实验研究[J].医学研究生学报,2013,26(6):564-567. [30] 潘娅岚,马勇,郭杨,等.脊髓康对脊髓损伤大鼠脊髓组织结构及神经生长因子表达的影响[J].中国实验方剂学杂志,2014,20(15):144-149. [31] 习德娥,韩莉,谭超,等.P2X7受体与基因转录的关系[J].中国免疫学杂志,2015,31(9):1294-1296. [32] 钱海燕,陈慧敏,杜明亮,等.成骨细胞特异性识别多肽对人成骨细胞增殖和矿化影响的实验研究[J].安徽医科大学学报,2016,51(3):337-340. [33] 蒋欣泉.骨缺损修复生物材料与骨再生[J].中华口腔医学杂志,2017, 52(10):600-604. [34] HAUSHERR TC, NUSS K, THEIN E, et al. Effect of temporal onsets of mechanical loading on bone formation inside a tissue engineering scaffold combined with cell therapy. Bone Rep. 2018;8:173-179. [35] 刘国民,卢天成,冀璇,等.与胶原特异性结合的BMP2模拟肽/PLGA3D打印复合支架的制备及成骨诱导活性[J].高等学校化学学报, 2019,40(7):1552-1560. [36] LI F, Yu F, Liao X, et al. Efficacy of recombinant human BMP2 and PDGF-BB in orofacial bone regeneration: a systematic review and meta-analysis. Sci Rep. 2019;9(1):8073. [37] 赵士明,李文雷,赵静一,等.组织工程三维多孔骨支架内部微流体流场研究[J].高技术通讯,2020,30(5):518-525. [38] DOWLATSHAHI S, CHEN CY, ZIGDON-GILADI H, et al. Volumetric assessment of changes in the alveolar ridge dimension following guided bone regeneration using a combination freeze-dried bone allograft with collagen membrane or novel resorbable scaffold: a prospective two-center clinical trial. J Periodontol. 2022;93(3):343-353. [39] 王伟伟,欧志学,章晓云,等.外泌体在激素性股骨头坏死修复信号交流网络中的调控机制[J].中国组织工程研究,2022,26(19):3056-3064 [40] 冯韬,孟正华,郭巍.4D打印智能材料及产品应用研究进展[J].数字印刷,2022,218(3):1-16. [41] DELUCCHI Á, TORO L, ALZAMORA R, et al. Glucocorticoids decrease longitudinal bone growth in pediatric kidney transplant recipients by stimulating the FGF23/FGFR3 signaling pathway. J Bone Miner Res. 2019;34(10):1851-1861. [42] LI D, ZHAO D, ZENG Z, et al. Ternary regulation mechanism of Rhizoma drynariae total flavonoids on induced membrane formation and bone remodeling in Masquelet technique. PLoS One. 2022;17(12):e0278688. [43] SOBUE T, GRAVELY T, HAND A, et al. Regulation of fibroblast growth factor 2 and fibroblast growth factor receptors by transforming growth factor beta in human osteoblastic MG-63 cells. J Bone Miner Res. 2002;17(3):502-512. [44] TOOSI S, BEHRAVAN J. Osteogenesis and bone remodeling: a focus on growth factors and bioactive peptides. Biofactors. 2020;46(3):326-340. [45] 彭竑程,华臻,杨惠林,等.肌源性因子调控骨组织细胞的作用机制研究进展[J].中国修复重建外科杂志,2021,35(7):923-929. [46] KATAGIRI T, WATABE T. Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 2016;8(6):a021899. [47] EINHORN TA, GERSTENFELD LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45-54. [48] HU K, OLSEN BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 2016; 126(2):509-526. [49] HU K, OLSEN BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone. 2016;91:30-38. [50] SIDDIQUI JA, PARTRIDGE NC. Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology (Bethesda). 2016; 31(3):233-245. [51] 何爱娟,张天宇.软骨组织工程种子细胞的研究进展[J].中国眼耳鼻喉科杂志,2020,20(1):3-6. [52] CHUNG JE, PARK JH, YUN JW, et al. Cultured human periosteum-derived cells can differentiate into osteoblasts in a perioxisome proliferator-activated receptor gamma-mediated fashion via bone morphogenetic protein signaling. Int J Med Sci. 2016;13(11):806-818. [53] 邢军超.间充质干细胞在组织工程骨修复骨缺损起始环节中的作用机理研究[D].重庆:第三军医大学,2014. [54] LIN X, PATIL S, GAO YG, et al. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol. 2020;11:757. [55] 胡文成,朱弘一,林俊卿,等.细胞周基质介导骨关节炎发生发展的研究进展[J].上海交通大学学报(医学版),2021,41(8):1089. [56] ZHOU Z, LIU D. Mesenchymal stem cell-seeded porous tantalum-based biomaterial: a promising choice for promoting bone regeneration. Colloids Surf B Biointerfaces. 2022;215:112491. [57] 杨均,李澎.转化生长因子β诱导骨髓间充质干细胞分化为半月板纤维软骨细胞[J].中国组织工程研究,2023,27(15):2412-2419. [58] HO-SHUI-LING A, Bolander J, Rustom LE, et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162. [59] SAITO A, SUZUKI Y, OGATA S, et al. Prolonged ectopic calcification induced by BMP-2-derived synthetic peptide. J Biomed Mater Res A. 2004;70(1): 115-121. [60] SAAD FA. Novel insights into the complex architecture of osteoporosis molecular genetics. Ann N Y Acad Sci. 2020;1462(1):37-52. [61] 吴穹. DKK1合成多肽对治疗骨质疏松症和成骨作用的研究[D].南京:南京大学,2011. [62] SARAN U, GEMINI PIPERNI S, CHATTERJEE S. Role of angiogenesis in bone repair. Arch Biochem Biophys. 2014;561:109-117. [63] HATTORI K, HEISSIG B, TASHIRO K, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood. 2001;97(11):3354-3360. [64] CHEN YC, LIN RZ, QI H, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater. 2012;22(10):2027-2039. [65] CORREIA C, GRAYSON WL, PARK M, et al. In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PLoS One. 2011; 6(12):e28352. [66] GRELLIER M, FERREIRA-TOJAIS N, BOURGET C, et al. Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells. J Cell Biochem. 2009;106(3):390-398. [67] SAIK JE, GOULD DJ, WATKINS EM, et al. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly (ethylene glycol) hydrogels. Acta biomaterialia. 2011;7(1):133-143. [68] PATEL ZS, YOUNG S, TABATA Y, et al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone. 2008;43(5):931-940. [69] HATTORI K, HEISSIG B, TASHIRO K, et al. Plasma elevation of stromal cellderived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood. 2001;97(11):3354-3360. [70] PELTOLA MJ, AITASALO KM, SUONPAA JT, et al. In vivo model for frontal sinus and calvarial bone defect obliteration with bioactive glass S53P4 and hydroxyapatite. J Biomed Mater Res. 2001;58(3):261-269. [71] YOUNG S, PATEL ZS, KRETLOW JD, et al. Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model. Tissue Eng Part A. 2009;15(9):2347-2362. [72] KAIGLER D, WANG Z, HORGERK, et al. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res. 2006;21(5):735-744. [73] ECKARDT H, DING M, LIND M, et al. Recombinant human vascular endothelial growth factor enhances bone healing in an experimental nonunion model. J Bone Joint Surg Br. 2005;87(10):1434-1438. [74] PENG H, USAS A, OLSHANSKI A, et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res. 2005;20(11):2017-2027. [75] 彭荟桢,蔡明详,刘湘宁.骨修复过程中的血管生成调控:新思路与新方法[J].中国组织工程研究,2022,26(15):2400-2405. [76] MOHYELDIN A, GARZON-MUVDI T, QUINONES-HINOJOSA A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell stem cell. 2010;7(2):150-161. [77] AMARILIO R, VIUKOV SV, SHARIR A, et al. HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development. 2007;134(21):3917-3928. [78] 张向荣.血管内皮细胞生长因子165基因转染人骨髓间充质干细胞构建组织工程皮肤的实验研究[D].南昌:南昌大学,2009. [79] CHEN X, HAN S, WU W, et al. Harnessing 4D printing bioscaffolds for advanced orthopedics. Small. 2022;18(36):e2106824. [80] LUI YS, SOW WT, TAN LP, et al. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 2019;92:19-36. [81] LI YC, ZHANG YS, AKPEK A, et al. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication. 2016;9(1):012001. [82] 龙域丰,朱古力,易伟宏,等.神经肽类物质在骨代谢与骨再生中的调控作用[J].中华实验外科杂志,2020,37(11):2131-2136. [83] QIN Q, LEE S, PATEL N, et al. Neurovascular coupling in bone regeneration. Exp Mol Med. 2022;54(11):1844-1849. [84] CRAFT CS, SCHELLER EL. Evolution of the marrow adipose tissue microenvironment. Calcified tissue international. 2017;100(5):461-475. [85] 李俊琴,尹欣雨,张帅帅,等.感觉神经在骨修复中的作用及应用[J].生命科学,2020,32(3):227-232. [86] ZHANG Z, HAO Z, XIAN C, et al. Neuro-bone tissue engineering: multiple potential translational strategies between nerve and bone. Acta Biomaterialia. 2022;153:1-12. [87] HU CH, SUI BD, LIU J, et al. Sympathetic neurostress drives osteoblastic exosomal mir-21 transfer to disrupt bone homeostasis and promote osteopenia. Small Methods. 2022;6(3):e2100763. [88] YANG Y, ZHOU J, LIANG C, et al. Effects of highly selective sensory/motor nerve injury on bone metabolism and bone remodeling in rats. J Musculoskelet Neuronal Interact. 2022;22(4):524-535. [89] HU K, ZHOU H, ZHANG G, et al. The effect of chemical sympathectomy and stress on bone remodeling in adult rats. Neuro Endocrinol Lett. 2010; 31(6):807-813. [90] WANG T, CAO J, DU ZJ, et al. Effects of sympathetic innervation loss on mandibular distraction osteogenesis. J Craniofac Surg. 2012;23(5):1524-1528. [91] 邓宁,胡庆芬,邱宇阳,等. NGF介导Fabp4/LCN-2蛋白对骨质疏松大鼠骨微结构及骨强度的影响[J].中国骨质疏松杂志,2022,28(7):992-997. [92] TOMLINSON RE, LI Z, ZHANG Q, et al. NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone. Cell Rep. 2016;16(10):2723-2735. [93] ROSCH G, El BAGDADI K, MUSCHTER D, et al. Sympathectomy aggravates subchondral bone changes during osteoarthritis progression in mice without affecting cartilage degeneration or synovial inflammation. Osteoarthritis Cartilage. 2022;30(3):461-474. [94] RADDANT AC, RUSSO AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med. 2011;13:e36. [95] CHUNG AM. Calcitonin gene-related peptide (CGRP): role in peripheral nerve regeneration. Rev Neurosci. 2018;29(4):369-376. [96] 姚旺祥,马安,裴国献.神经肽在神经化组织工程骨中表达的早期实验研究[J].浙江创伤外科,2010,15(4):439-443. [97] SEIRADAKE E, JONES EY, KLEIN R. Structural perspectives on axon guidance. Annu Rev Cell Dev Biol. 2016;32:577-608. [98] KIM SK, PAK HN, PARK JH, et al. Cardiac cell therapy with mesenchymal stem cell induces cardiac nerve sprouting, angiogenesis, and reduced connexin43-positive gap junctions, but concomitant electrical pacing increases connexin43-positive gap junctions in canine heart. Cardiol Young. 2010;20(3):308-317. [99] MAPP PI, WALSH DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 2012;8(7):390-398. [100] 姚洋,杜宇,古霞,等.局部注射外源性神经生长因子促进小鼠钛种植体周骨胶原早期成熟的研究[J].华西口腔医学杂志,2018,36(2):128-132. [101] ELEFTERIOU F, AHN JD, TAKEDA S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032): 514-520. [102] YASUDA H. Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab. 2021;39(1):2-11. [103] MA F, LUO X, MA J, et al. The effect of the α7nAChR agonist on Wnt/β-catenin signaling in osteoporosis. Int J Clin Exp Pathol. 2019;12(8):2867-2874. [104] JIAO K, NIU LN, LI QH, et al. β2-Adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis. Sci Rep. 2015;5(1):12593. [105] DAVIS EL, DAVIS AR, GUGALA Z, et al. Is heterotopic ossification getting nervous? The role of the peripheral nervous system in heterotopic ossification. Bone. 2018;109:22-27. [106] KOKUBU N, TSUJII M, AKEDA K, et al. BMP-7/Smad expression in dedifferentiated Schwann cells during axonal regeneration and upregulation of endogenous BMP-7 following administration of PTH (1-34). J Orthop Surg (Hong Kong). 2018;26(3):2309499018812953. [107] LI Z, MEYERS CA, CHANG L, et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J.Clin. Invest. 2019;129(12):5137-5150. [108] MUKOUYAMA YS, SHIN D, BRITSCH S, et al. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell. 2002;109(6):693-705. [109] NUKAVARAPU SP, DORCEMUS DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv. 2013;31(5):706-721. |
[1] | 杨玉芳, 杨芷姗, 段棉棉, 刘毅恒, 唐正龙, 王 宇. 促红细胞生成素在骨组织工程中的应用及前景[J]. 中国组织工程研究, 2024, 28(9): 1443-1449. |
[2] | 陈凯佳, 刘景云, 曹 宁, 孙建波, 周 燕, 梅建国, 任 强. 组织工程技术在股骨头坏死治疗中的应用及前景[J]. 中国组织工程研究, 2024, 28(9): 1450-1456. |
[3] | 王姗姗, 舒 晴, 田 峻. 物理因子促进干细胞的成骨分化[J]. 中国组织工程研究, 2024, 28(7): 1083-1090. |
[4] | 张克凡, 石 辉. 细胞因子治疗骨关节炎的研究现状及应用前景[J]. 中国组织工程研究, 2024, 28(6): 961-967. |
[5] | 王业元, 杜易朗, 于德浩, 宁凤婷, 白 冰. 微弧氧化处理对医用金属生物活性的影响[J]. 中国组织工程研究, 2024, 28(5): 771-776. |
[6] | 王嘉旎, 陈俊宇. 金属离子促血管生成机制及在骨组织工程中的应用[J]. 中国组织工程研究, 2024, 28(5): 804-812. |
[7] | 张 娅, 牟秋菊, 王自林, 刘宏杰, 祝丽丽. 负载富血小板血浆的水凝胶促进糖尿病大鼠创面愈合[J]. 中国组织工程研究, 2024, 28(5): 690-696. |
[8] | 朱礼威, 王江玥, 白 丁. 纳米复合甲基丙烯酰明胶水凝胶在不同骨缺损环境中应用的价值[J]. 中国组织工程研究, 2024, 28(5): 753-758. |
[9] | 朱小烽, 陈为玮, 黄 健. 母鼠高脂饮食与运动干预对雄性子代胰岛素敏感性及下丘脑弓状核的影响[J]. 中国组织工程研究, 2024, 28(4): 556-561. |
[10] | 杨雨晴, 陈志宇. 早期短暂M1巨噬细胞在骨组织工程中的作用及应用[J]. 中国组织工程研究, 2024, 28(4): 594-601. |
[11] | 买斯吐热木·黑力力, 张婉霞, 尼加提·努尔穆罕默德, 买买提吐逊·吐尔地. 关节腔注射医用臭氧对早期颞下颌骨关节炎模型大鼠髁突组织学的影响[J]. 中国组织工程研究, 2024, 28(4): 505-509. |
[12] | 刘雪丽, 沈 丽, 毕文光, 牟 杨, 李 森. 低强度脉冲超声对大鼠急性肌腱损伤早期血管生成的影响及机制[J]. 中国组织工程研究, 2024, 28(32): 5097-5103. |
[13] | 熊 洋, 周世博, 俞 兴, 毕连涌, 杨济洲, 王逢贤, 曲 弋, 杨永栋, 赵丁岩, 赵 赫, 仇子叶, 姜国正. 获得性异位骨化的分子生物学机制[J]. 中国组织工程研究, 2024, 28(30): 4881-4888. |
[14] | 高雪钰, 张文涛, 孙天泽, 张 警, 李忠海. 金属离子在骨组织工程中的应用[J]. 中国组织工程研究, 2024, 28(3): 439-444. |
[15] | 陈品叡, 裴锡波, 薛轶元. 磁响应水凝胶在骨组织工程中的作用与优势[J]. 中国组织工程研究, 2024, 28(3): 452-457. |
1.1.7 检索策略 以PubMed和中国知网数据库检索策略为例,见图1。
1.3 文献质量评估和数据的提取 对所有文献依据文献题目、摘要和关键词进行主题和质量的评估,剔除与文章目的无关、年代久远及重复的文献,共纳入英文文献72篇(PubMed数据库49篇,Web of Science数据库13篇,Science Direct数据库10篇),中文文献37篇(中国知网数据库24篇,万方数据库13篇),共109篇进行综述分析,见图2。
#br#
文题释义:
骨组织工程:通过结合种子细胞、组织工程材料及物理化学因子等要素来调控骨组织微环境的变化以诱导新的功能性骨再生,提升或替代受损骨组织器官的生物学功能。骨缺损主要是由创伤、感染、病理性骨折、肿瘤切除及骨髓炎清创等引起,尽管骨具有显著的再生能力,但骨缺损的再生和修复仍然是骨科手术的主要挑战。自体骨移植、异体骨移植和生物材料填充是目前治疗节段性骨缺损的主要方法,其中自体骨移植是公认修复骨损伤的“金标准”。但因自体骨量不足、供区二次损伤及移植骨吸收等问题限制了该治疗方法的应用。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||