[1] BARKER E, SHEPHERD J, ASENCIO IO. The use of cerium compounds as antimicrobials for biomedical applications. Molecules. 2022;27(9):2678.
[2] LI H, XIA P, PAN S, et al. The advances of ceria nanoparticles for biomedical applications in orthopaedics. Int J Nanomedicine. 2020;15: 7199-7214.
[3] KARGOZAR S, BAINO F, HOSEINI SJ, et al. Biomedical applications of nanoceria: new roles for an old player. Nanomedicine (Lond). 2018; 13(23):3051-3069.
[4] THILL A, ZEYONS O, SPALLA O, et al. Cytotoxicity of CeO2 nanoparticles for escherichia coli. physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol. 2006;40(19):6151-6156.
[5] PELLETIER DA, SURESH AK, HOLTON GA, et al. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol. 2010;76(24):7981-7989.
[6] ZHANG M, ZHANG C, ZHAI X, et al. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci China Mater. 2019;62(11):1727-1739.
[7] LIU Z, WANG F, REN J, et al. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials. 2019;208:21-31.
[8] STEPHEN INBARAJ B, CHEN BH. An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian J Pharm Sci. 2020;15(5):558-575.
[9] WEI F, NEAL CJ, SAKTHIVEL TS, et al. Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis. Mater Sci Eng C Mater Biol Appl. 2021;124:112041.
[10] LI J, WEN J, LI B, et al. Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation. Adv Sci (Weinh). 2018;5(2):1700678.
[11] HU Y, DU Y, JIANG H, et al. Cerium promotes bone marrow stromal cells migration and osteogenic differentiation via Smad1/5/8 signaling pathway. Int J Clin Exp Pathol. 2014;7(8):5369-5378.
[12] LUO J, ZHU S, TONG Y, et al. Cerium oxide nanoparticles promote osteoplastic precursor differentiation by activating the Wnt pathway. Biol Trace Elem Res. 2022;201(2):865-873.
[13] LU B, ZHU DY, YIN JH, et al. Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway. Biofabrication. 2019;11(2):025012.
[14] CHIGURUPATI S, MUGHAL MR, OKUN E, et al. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials. 2013;34(9): 2194-2201.
[15] PARK IS, MAHAPATRA C, PARK JS, et al. Revascularization and limb salvage following critical limb ischemia by nanoceria-induced Ref-1/APE1-dependent angiogenesis. Biomaterials. 2020;242:119919.
[16] DOWDING JM, DAS S, KUMAR A, et al. Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials. ACS Nano. 2013;7(6):4855-4868.
[17] WASON MS, COLON J, DAS S, et al. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine. 2013;9(4):558-569.
[18] TIAN Z, LIU H, GUO Z, et al. A pH-responsive polymer-CeO2 hybrid to catalytically generate oxidative stress for tumor therapy. Small. 2020;16(47):e2004654.
[19] DATTA A, MISHRA S, MANNA K, et al. Pro-oxidant therapeutic activities of cerium oxide nanoparticles in colorectal carcinoma cells. ACS Omega. 2020;5(17):9714-9723.
[20] CORSI F, CAPUTO F, TRAVERSA E, et al. Not Only Redox: The multifaceted activity of cerium oxide nanoparticles in cancer prevention and therapy. Front Oncol. 2018;8:309.
[21] ZENG L, CHENG H, DAI Y, et al. In vivo regenerable cerium oxide nanozyme-Loaded pH/H2O2-responsive nanovesicle for tumor-targeted photothermal and photodynamic therapies. ACS Appl Mater Interfaces. 2021;13(1):233-244.
[22] ZHOU X, YOU M, WANG F, et al. Multifunctional graphdiyne-cerium oxide nanozymes facilitate microRNA delivery and attenuate tumor hypoxia for highly efficient radiotherapy of esophageal cancer. Adv Mater. 2021;33(24):e2100556.
[23] 李楠,谢志鹏,易中周,等. CeO2稳定ZrO2陶瓷材料的研究进展[J].陶瓷学报,2020,41(6):835-848.
[24] PALMERO P, FORNABAIO M, MONTANARO L, et al. Towards long lasting zirconia-based composites for dental implants. Part I: innovative synthesis, microstructural characterization and in vitro stability. Biomaterials. 2015; 50:38-46.
[25] NAWA M, NAKAMOTO S, SEKINO T, et al. Tough and strong Ce-TZP/alumina nanocomposites doped with titania. Ceram Int. 1998;24(7):497-506.
[26] TANAKA K, TAMURA J, KAWANABE K, et al. Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement. J Biomed Mater Res. 2002; 63(3):262-270.
[27] TANAKA S, TAKABA M, ISHIURA Y, et al. A 3-year follow-up of ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) frameworks for fixed dental prostheses. J Prosthodont Res. 2015;59(1):55-61.
[28] HUTTIG F, KEITEL JP, PRUTSCHER A, et al. Fixed dental prostheses and single-tooth crowns based on ceria-stabilized tetragonal zirconia/alumina nanocomposite frameworks: outcome after 2 years in a clinical trial. Int J Prosthodont. 2017;30(5):461-464.
[29] FISCHER J, STAWARCZYK B. Compatibility of machined Ce-TZP/Al2O3 nanocomposite and a veneering ceramic. Dent Mater. 2007;23(12): 1500-1505.
[30] TERUI Y, SATO K, GOTO D, et al. Compatibility of Ce-TZP/Al2O3 nanocomposite frameworks and veneering porcelains. Dent Mater J. 2013;32(5):839-846.
[31] SAWADA T, SCHILLE C, WAGNER V, et al. Biaxial flexural strength of the bilayered disk composed of ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) and veneering porcelain. Dent Mater. 2018;34(8):1199-1210.
[32] HAGIWARA Y, NAKAJIMA K. Application of Ce-TZP/Al2O3 nanocomposite to the framework of an implant-fixed complete dental prosthesis and a complete denture. J Prosthodont Res. 2016;60(4):337-343.
[33] HAGIWARA Y, NAKABAYASHI S, IKEDA T, et al. Ceria-stabilized zirconia/alumina nanocomposite for fabricating the framework of removable dental prostheses: preliminary results from a 4-year follow-up. Int J Prosthodont. 2019;32(3):254-256.
[34] URANO S, HOTTA Y, MIYAZAKI T, et al. Bending properties of Ce-TZP/A nanocomposite clasps for removable partial dentures. Int J Prosthodont. 2015;28(2):191-197.
[35] REVERON H, FORNABAIO M, PALMERO P, et al. Towards long lasting zirconia-based composites for dental implants: transformation induced plasticity and its consequence on ceramic reliability. Acta Biomater. 2017;48:423-432.
[36] ALTMANN B, RABEL K, KOHAL RJ, et al. Cellular transcriptional response to zirconia-based implant materials. Dent Mater. 2017;33(2):241-255.
[37] ALTMANN B, KARYGIANNI L, AL-AHMAD A, et al. Assessment of novel long-lasting ceria-stabilized zirconia-based ceramics with different surface topographies as implant materials. Adv Funct Mater. 2017;27(40):1702512.
[38] SAITO MM, ONUMA K, YAMAMOTO R, et al. New insights into bioactivity of ceria-stabilized zirconia: direct bonding to bone-like hydroxyapatite at nanoscale. Mater Sci Eng C Mater Biol Appl. 2021; 121:111665.
[39] LOPEZ-PIRIZ R, FERNANDEZ A, GOYOS-BALL L, et al. Performance of a new Al2O3/Ce-TZP ceramic nanocomposite dental implant: a pilot study in dogs. Materials (Basel). 2017;10(6):614.
[40] BURKHARDT F, HARLASS M, ADOLFSSON E, et al. A novel zirconia-based composite presents an aging resistant material for narrow-diameter ceramic implants. Materials (Basel). 2021;14(9):2151.
[41] SRICHUMPONG T, PINTASIRI S, HENESS G, et al. The influence of yttria-stabilised zirconia and cerium oxide on the microstructural morphology and properties of a mica glass-ceramic for restorative dental materials. J Asian Ceram Soc. 2021;9(3):926-933.
[42] GHAHSAREH ZS, BANIJAMALI S, AGHAEI A. Cerium oxide containing canasite based glass-ceramics for dental applications: crystallization behavior, mechanical and chemical properties. ceram Int. 2022;48(6): 8489-8501.
[43] CIOBANU G, HARJA M. Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants. Ceram Int. 2019;45(2):2852-2857.
[44] YUE J, JIN Z, POON HLE, et al. Osteogenic and antibacterial activity of a plasma-sprayed CeO2 coating on a titanium (Ti)-based dental implant. Coatings. 2020;10(10):1007.
[45] MATTER MT, MALIQI L, KEEVEND K, et al. One-step synthesis of versatile antimicrobial nano-architected implant coatings for hard and soft tissue healing. ACS Appl Mater Interfaces. 2021;13(28):33300-33310.
[46] QI S, WU J, XU Y, et al. Chemical stability and antimicrobial activity of plasma-sprayed cerium oxide-incorporated calcium silicate coating in dental implants. Implant Dent. 2019;28(6):564-570.
[47] DE SANTIS S, SOTGIU G, PORCELLI F, et al. A simple cerium coating strategy for titanium oxide nano-tubes’ bioactivity enhancement. Nanomaterials (Basel). 2021;11(2):445.
[48] KALIARAJ GS, KIRUBAHARAN AMK, ALAGARSAMY K, et al. Silver-ceria stabilized zirconia composite coatings on titanium for potential implant applications. Surf Coat Tech. 2019;368:224-231.
[49] HU W, YIE KHR, LIU C, et al. Improving the valence self-reversible conversion of cerium nanoparticles on titanium implants by lanthanum doping to enhance ROS elimination and osteogenesis. Dent Mater. 2022;38(8):1362-1375.
[50] SHAO D, LI K, YOU M, et al. Macrophage polarization by plasma sprayed ceria coatings on titanium-based implants: cerium valence state matters. Appl Surf Sci. 2020;504:144070.
[51] LI X, QI M, SUN X, et al. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 2019;94:627-643.
[52] WEGEHAUPT FJ, SENER B, ATTIN T, et al. Application of cerium chloride to improve the acid resistance of dentine. Arch Oral Biol. 2010;55(6): 441-446.
[53] WEGEHAUPT FJ, SENER B, ATTIN T, et al. Anti-erosive potential of amine fluoride, cerium chloride and laser irradiation application on dentine. Arch Oral Biol. 2011;56(12):1541-1547.
[54] WEGEHAUPT FJ, BUCHALLA W, SENER B, et al. Cerium chloride reduces enamel lesion initiation and progression in vitro. Caries Res. 2014;48(1):45-50.
[55] JAISINGH R, SHANBHOG R, NANDLAL B, et al. Effect of 10% cerium chloride on artificial caries lesions of human enamel evaluated using quantitative light-induced fluorescence: an in vitro study. Eur Arch Paediatr Dent. 2017;18(3):163-169.
[56] POPOV AL, ZHOLOBAK NM, SHCHERBAKOV AB, et al. The strong protective action of Ce3+/F- combined treatment on tooth enamel and epithelial cells. Nanomaterials (Basel). 2022;12(17):3034.
[57] BHATT L, CHEN L, GUO J, et al. Hydrolyzed Ce(IV) salts limit sucrose-dependent biofilm formation by Streptococcus mutans. J Inorg Biochem. 2020;206:110997.
[58] POURHAJIBAGHER M, BAHADOR A. Physico-mechanical properties, antimicrobial activities, and anti-biofilm potencies of orthodontic adhesive containing cerium oxide nanoparticles against Streptococcus mutans. Folia Med (Plovdiv). 2022;64(2):252-259.
[59] VARGHESE EJ, SIHIVAHANAN D, VENKATESH KV. Development of novel antimicrobial dental composite resin with nano cerium oxide fillers. Int J Biomater. 2022;2022:3912290.
[60] GARCIA IM, LEITUNE VCB, TAKIMI AS, et al. Cerium dioxide particles to tune radiopacity of dental adhesives: microstructural and physico-chemical evaluation. J Funct Biomater. 2020;11(1):7.
[61] JUN SK, YOON JY, MAHAPATRA C, et al. Ceria-incorporated MTA for accelerating odontoblastic differentiation via ROS downregulation. Dent Mater. 2019;35(9):1291-1299.
[62] DUMRONGVUTE K, ADEL S, WADA T, et al. Distrontium cerate as a radiopaque component of hydraulic endodontic cement. Materials (Basel). 2021;15(1):284.
[63] YU Y, ZHAO S, GU D, et al. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NFκB pathway. Nanoscale. 2022;14(7):2628-2637.
[64] WANG Y, LI C, WAN Y, et al. Quercetin-loaded ceria nanocomposite potentiate dual-directional immunoregulation via macrophage polarization against periodontal inflammation. Small. 2021;17(41): e2101505.
[65] LI X, QI M, LI C, et al. Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis. J Mater Chem B. 2019;7(44):6955-6971.
[66] REN S, ZHOU Y, FAN R, et al. Constructing biocompatible MSN@Ce@PEG nanoplatform for enhancing regenerative capability of stem cell via ROS-scavenging in periodontitis. Chem Eng J. 2021;423:130207.
[67] SUN Y, SUN X, LI X, et al. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials. 2021;268:120614.
[68] PACHAURI N, DAVE K, DINDA A, et al. Cubic CeO2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. J Mater Chem B. 2018;6(19):3000-3012.
[69] HE B, WANG J, LIN J, et al. Association between rare earth element cerium and the risk of oral cancer: a case-control study in southeast china. Front Public Health. 2021;9:647120.
[70] DE MARZI L, MONACO A, DE LAPUENTE J, et al. Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int J Mol Sci. 2013;14(2):3065-3077.
[71] GAGNON J, FROMM KM. Toxicity and Protective Effects of cerium oxide nanoparticles (nanoceria) depending on their preparation method, particle size, cell type, and exposure route. Eur J Inorg Chem. 2015;2015(27):4510-4517.
[72] ARSLAN K, AKBABA GB. In vitro genotoxicity assessment and comparison of cerium (IV) oxide micro- and nanoparticles. Toxicol Ind Health. 2020;36(2):76-83.
[73] STROBEL C, FORSTER M, HILGER I. Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells. Beilstein J Nanotechnol. 2014;5:1795-1807.
|