中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (34): 5448-5454.doi: 10.12307/2023.839

• 组织工程软骨材料 tissue-engineered cartilage • 上一篇    下一篇

双喷头静电纺丝法制备载软骨脱细胞基质的复合纳米纤维支架

滕建祥1,朱骥生1,袁代柱2,王  桢1,周玉虎2,田晓滨1,2   

  1. 1贵州医科大学,贵州省贵阳市  550001;2贵州医科大学附属医院骨科,贵州省贵阳市  550004
  • 收稿日期:2022-11-02 接受日期:2022-12-15 出版日期:2023-12-08 发布日期:2023-04-20
  • 通讯作者: 田晓滨,主任医师,贵州医科大学,贵州省贵阳市 550001;贵州医科大学附属医院骨科,贵州省贵阳市 550004
  • 作者简介:滕建祥,男,1993年生,重庆市人,土家族,贵州医科大学在读硕士,医师,主要从事组织工程、生物材料研究。
  • 基金资助:
    贵州省科技计划项目(黔科合支撑[2021]一般072),项目负责人:田晓滨

Preparation of cartilage decellularized extracellular matrix-loaded composite nanofiber scaffolds based on two-nozzle electrospinning

Teng Jianxiang1, Zhu Jisheng1, Yuan Daizhu2, Wang Zhen1, Zhou Yuhu2, Tian Xiaobin1, 2   

  1. 1Guizhou Medical University, Guiyang 550001, Guizhou Province, China; 2Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
  • Received:2022-11-02 Accepted:2022-12-15 Online:2023-12-08 Published:2023-04-20
  • Contact: Tian Xiaobin, Chief physician, Guizhou Medical University, Guiyang 550001, Guizhou Province, China; Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
  • About author:Teng Jianxiang, Master candidate, Physician, Guizhou Medical University, Guiyang 550001, Guizhou Province, China
  • Supported by:
    Guizhou Science and Technology Plan Project, No. [2021]072 (to TXB)

摘要:


文题释义:

双喷头静电纺丝:使用2个推注喷头对两种不同种类或不同特性的物质在同一高压电场下进行共同静电纺丝在同一接收器上,从而构建出具有多样化功能的纳米纤维。
脱细胞基质:通过物理、化学或酶等方法对组织进行脱细胞处理,保留具有生物活性的细胞外基质,可作为组织工程支架的构建材料,用于组织或器官的修复。

背景:软骨脱细胞基质是一种理想的用于构建软骨组织工程支架的生物材料,可以用于软骨缺损的修复。
目的:以聚乙烯醇为脱细胞基质的负载材料,3-羟基丁酸酯与4-羟基丁酸酯共聚物为框架材料,通过双喷头静电纺丝构建复合纳米纤维支架,并初步探索其体外生物活性。
方法:通过酶、化学与超声振荡清洗结合的方法去除软骨组织中的细胞成分,制成软骨脱细胞基质。用双喷头静电纺丝的方法分别制备3-羟基丁酸酯与4-羟基丁酸酯共聚物(记为P34HB)、3-羟基丁酸酯与4-羟基丁酸酯共聚物-聚乙烯醇(记为P34HB-PVA)、3-羟基丁酸酯与4-羟基丁酸酯共聚物-聚乙烯醇-脱细胞基质(记为P34HB-PVA-dECM)纳米纤维支架,表征支架的纤维形貌、组成成分、亲水性能和力学性能。将人骨髓间充质干细胞与3种支架共培养,通过Live/Dead染色来检测细胞在支架的活力,扫描电镜观察细胞在支架上的黏附形态,阿尔玛蓝试剂盒检测细胞在支架上的增殖性能,Ⅱ型胶原免疫荧光评估细胞在支架上的成软骨分化。

结果与结论:①扫描电镜下可见,各组支架纤维呈随机分布,纤维之间互相连接呈现多孔结构,其中P34HB-PVA-dECM支架的纤维直径最小;P34HB-PVA-dECM支架的水接触角小于P34HB、P34HB-PVA支架(P < 0.05),吸水率高于P34HB、P34HB-PVA支架(P < 0.05);P34HB-PVA-dECM支架的弹性模量高于P34HB、P34HB-PVA支架(P < 0.05);②Live/Dead染色结果显示,大多数骨髓间充质干细胞在3组支架上均能够存活;扫描电镜观察显示,骨髓间充质干细胞在P34HB-PVA-dECM支架上的伪足伸展更充分,与支架的融合更好;阿尔玛蓝染色显示,P34HB-PVA-dECM支架上的骨髓间充质干细胞增殖速度快于P34HB、P34HB-PVA支架(P < 0.05);免疫荧光染色显示,P34HB-PVA-dECM支架上骨髓间充质干细胞生成的Ⅱ型胶原量多于P34HB、P34HB-PVA支架(P < 0.05);③结果表明,P34HB-PVA-dECM支架具有更细的纤维结构、更好亲水性和力学性能,更适合细胞黏附、增殖,有利于骨髓间充质干细胞向成软骨方向分化。

https://orcid.org/0000-0002-9942-9354(滕建祥)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料口腔生物材料纳米材料缓释材料材料相容性组织工程

关键词: 双喷头静电纺丝, 脱细胞基质, 聚乙烯醇, 软骨, 组织工程, 生物材料, 纳米纤维支架

Abstract: BACKGROUND: Cartilage decellularized extracellular matrix (dECM) is an ideal biomaterial for the preparation of cartilage tissue engineering scaffolds, which can be used to repair cartilage defects.
OBJECTIVE: To use polyvinyl alcohol (PVA) as the loading material of dECM and poly3-hydroxybutyrate 4-hydroxybutyrate (P34HB) as the frame material to prepare P34HB-PVA-dECM composite nanofiber scaffolds by two-needle electrospinning, and preliminarily explore the bioactivity of the scaffolds in vitro.
METHODS: The cellular components in the cartilage tissue were removed by a combination of enzyme, chemical, and ultrasonic concussion cleaning methods to prepare cartilage dECM. P34HB, P34HB-PVA, and P34HB-PVA-dECM scaffolds were prepared by two-neezle electrospinning. The fiber morphology, composition, hydrophilicity, and mechanical properties of the scaffolds were characterized. Human bone marrow mesenchymal stem cells were co-cultured with the three kinds of scaffolds. The viability of cells on scaffolds was evaluated by the Live/Dead staining. The adhesion morphology of the cells on the scaffolds was observed by scanning electron microscopy. The proliferation performance of the cells on the scaffolds was detected by the alamar blue kit. The chondrogenic differentiation of human bone marrow stem cells on the scaffolds was evaluated by type II collagen immunofluorescence.

RESULTS AND CONCLUSION: (1) Scanning electron microscopy results showed that the scaffold fibers in each group were randomly distributed and the interconnections between the fibers showed a porous structure. The fiber diameter of P34HB-PVA-dECM scaffolds was the smallest. The P34HB-PVA-dECM scaffolds had the smallest water contact angle (P < 0.05) and the highest water absorption rate compared with the P34HB and P34HB-PVA scaffolds (P < 0.05). The elastic modulus of the P34HB-PVA-dECM scaffolds was higher than that of the P34HB and P34HB-PVA scaffolds (P < 0.05). (2) Live/Dead staining showed that most cells survived well on the three groups of scaffolds. The scanning electron microscope observation showed that the bone marrow mesenchymal stem cells on P34HB-PVA-dECM scaffolds extended pseudopod more fully and fused better with the scaffolds. Alamar blue staining exhibited that the proliferation rate of bone marrow mesenchymal stem cells on the P34HB-PVA-dECM scaffolds was faster than that on the P34HB and P34HB-PVA scaffolds (P < 0.05). The immunofluorescence staining results showed that more type II collagen produced after chondrogenic induction on the P34HB-PVA-dECM scaffolds was more than that on the P34HB and P34HB-PVA scaffolds (P < 0.05). (3) To sum up, the P34HB-PVA-dECM composite nanofiber scaffolds have smaller fiber structure, more optimized hydrophilicity and mechanical properties, which is more favorable for the adhesion, proliferation, and differentiation into chondrocytes of bone marrow mesenchymal stem cells. 

Key words: two-nozzle electrospinning, decellularized extracellular matrix, polyvinyl alcohol, cartilage, tissue engineering, biomaterial, nanofiber scaffold

中图分类号: