中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (28): 4539-4545.doi: 10.12307/2023.519

• 组织构建临床实践 clinical practice in tissue construction • 上一篇    下一篇

激素性股骨头坏死风险模型构建及潜在的中药治疗预测

章晓云1,高振罡1,陈  锋1,曾  浩1,刘  桦1,苏允裕2   

  1. 1广西中医药大学附属瑞康医院,广西壮族自治区南宁市  530011;2广西钦州市第一人民医院,广西壮族自治区钦州市  535000
  • 收稿日期:2022-08-10 接受日期:2022-09-02 出版日期:2023-10-08 发布日期:2023-01-29
  • 通讯作者: 苏允裕,主任医师,广西钦州市第一人民医院,广西壮族自治区钦州市 535000
  • 作者简介:章晓云,博士,硕士生导师,副主任中医师,主要从事中医药在骨伤疾病中的临床与基础研究。
  • 基金资助:
    广西自然科学基金青年基金(2020GXNSFBA159053),项目负责人:章晓云;国家自然科学基金资助项目(81960803),项目参与人:章晓云;广西中医药大学一流学科课题(2019XK029),项目负责人:章晓云;广西临床重点专科(创伤外科)建设项目(桂卫医发{2021}17号),项目参与人:章晓云;广西中医药大学青年创新研究团队项目(2021TD001),项目负责人:章晓云

Construction of a risk model of steroid-induced necrosis of the femoral head and prediction of potential Chinese medicine treatments

Zhang Xiaoyun1, Gao Zhengang1, Chen Feng1, Zeng Hao1, Liu Hua1, Su Yunyu2   

  1. 1Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China; 2The First People’s Hospital of Qinzhou, Qinzhou 535000, Guangxi Zhuang Autonomous Region, China
  • Received:2022-08-10 Accepted:2022-09-02 Online:2023-10-08 Published:2023-01-29
  • Contact: Su Yunyu, Chief physician, The First People’s Hospital of Qinzhou, Qinzhou 535000, Guangxi Zhuang Autonomous Region, China
  • About author:Zhang Xiaoyun, MD, Master’s supervisor, Associate chief physician, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
  • Supported by:
    Guangxi Natural Science Foundation for the Youth, No. 2020GXNSFBA159053 (to ZXY); National Natural Science Foundation of China, No. 81960803 (to ZXY [project participant]); First-class Discipline Project of Guangxi University of Traditional Chinese Medicine, No. 2019XK029 (to ZXY); Guangxi Key Clinical Specialty (Trauma Surgery) Construction Project, No. {2021}17 (to ZXY [project participant]); Youth Innovation Research Team Project of Guangxi University of Traditional Chinese Medicine, No. 2021TD001 (to ZXY)

摘要:

文题释义:

ceRNA调控网络:也被称为竞争性内源RNA,是指长链非编码RNA(lncRNA)和环状RNA(circRNA)等非编码RNA会竞争结合microRNA,从而引起microRNA调控的靶基因发生变化,最终影响蛋白表达水平,而ceRNA调控网络的关键因素是microRNA。一个ceRNA可以结合多个microRNA,其结合位点被称为microRNA 识别元件。当ceRNA表达量升高时,会竞争性结合microRNA,从而引起mRNA 转录水平升高,最终提高蛋白表达水平,反之亦然。
激素性股骨头坏死:是患者长期或者大剂量应用糖皮质激素后导致骨细胞代谢失衡,骨内循环障碍,局部充血,从而引起股骨头发生变性、坏死,进而出现髋关节疼痛、活动受限,严重影响患者的生活质量,目前尚未有确切的治疗方案。

背景:随着疾病治疗模式的改变,人们已经意识到中医药在激素性股骨头坏死治疗过程中的重要性,因此利用生物信息学从分子水平分析激素性股骨头坏死的发病机制,构建疾病风险模型,并预测具有潜在治疗作用的中药,为后期中医药治疗激素性股骨头坏死提供一定的理论依据。
目的:基于生物信息学挖掘激素性股骨头坏死的竞争性内源RNA(ceRNA)调控网络,分析其在激素性股骨头坏死中的分子调控机制,预测相关疾病靶点并构建疾病风险模型,同时预测具有潜在治疗作用的中药。
方法:检索GEO数据库,下载激素性股骨头坏死的矩阵文件GSE123568和基因注释文件GPL15207。借助R语言等软件分析得到差异表达的长链非编码RNA与mRNA,并通过公共数据库预测与差异表达长链非编码RNA关联的miRNA-mRNA,再将预测到的mRNA与差异表达mRNA取交集,整合得到ceRNA网络。随后采用STRING数据库和Cytoscape软件筛选关键基因,利用R语言分析关键基因的功能与相关通路,并挖掘关键ceRNA网络。最后根据关键基因构建激素性股骨头坏死的风险模型,并进行中药预测。

结果与结论:①与健康对照相比,激素性股骨头坏死患者共有7个长链非编码RNA和1 763个mRNAs存在差异表达;②筛选出STAT3、KAT2B、AGO4、JAK2、JAK1、PTGS2共6个关键基因;③关键基因所富集的功能包括对肽激素的反应、白细胞介素6介导的信号通路、细胞对白细胞介素6的反应等生物学过程,涉及JAK-STAT、脂肪细胞因子、催乳素等信号通路;④4种miRNAs(miR-135a-5p、miR-137、miR-17-5p、miR-20b-5p)和2种长链非编码RNA (SNHG11、C20orf197)可能在导致激素性股骨头坏死发生发展过程中发挥关键作用;⑤KAT2B最有可能是激素性股骨头坏死发生发展的风险因子;⑥郁金、淫羊藿、黄芪具备治疗激素性股骨头坏死疾病靶点的可能。通过对激素性股骨头坏死相关长链非编码RNA介导的ceRNA网络进行分析,识别出潜在的疾病靶点、信号通路及潜在治疗中药,为进一步阐明其发病机制,并为后续的实验研究提供参考依据。

https://orcid.org/0000-0002-2572-0229(章晓云)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 激素性股骨头坏死, 长链非编码RNA, 竞争性内源RNA, 生物信息学, 中药预测

Abstract: BACKGROUND: With the change of disease treatment mode, people have realized the importance of traditional Chinese medicine in the treatment of steroid-induced necrosis of the femoral head (SANFH). Therefore, bioinformatics is used to analyze the pathogenesis of SANFH at the molecular level, build a disease risk model, and predict the potential therapeutic effects of traditional Chinese medicine, so as to provide a theoretical basis for the treatment of SANFH by traditional Chinese medicine in the future.
OBJECTIVE: To mine the competing endogenous RNA regulatory network of SANFH based on bioinformatics, analyze its molecular regulatory mechanism in SANFH, predict relevant disease targets, build disease risk models, and predict Chinese herbal medicines with potential therapeutic effects.
METHODS: The GEO database was searched to download the SANFH matrix file GSE123568 and gene annotation file GPL15207. The differentially expressed long non-coding RNAs and mRNAs were obtained by software analysis such as R language, and the miRNA-mRNAs associated with the differentially expressed long non-coding RNAs were predicted through the public database. Then, predicted and differentially expressed mRNAs were intersected and integrated to obtain the competing endogenous RNA network. STRING database and Cytoscape software were used to screen key genes and R language was used to analyze the functions and related pathways of key genes and mine the key competing endogenous RNA network. Finally, the risk model of SANFH was constructed according to the key genes and the prediction of traditional Chinese medicine was carried out.
RESULTS AND CONCLUSION: Compared with healthy controls, a total of 7 long non-coding RNAs and 1763 mRNAs were differentially expressed in SANFH patients. Six key genes including STAT3, KAT2B, AGO4, JAK2, JAK1, and PTGS2 were identified. The enriched functions of key genes include biological processes such as response to peptide hormones, interleukin-6-mediated signaling pathways, and cell responses to interleukin-6, and are involved in signaling pathways such as JAK-STAT, adipocytokines, and prolactin. Four miRNAs (miR- 135a-5p, miR-137, miR-17-5p, miR-20b-5p) and two long non-coding RNAs (SNHG11, C20orf197) may play a key role in the occurrence and development of SANFH. KAT2B is most likely to be a risk factor for SANFH. Turmeric, Epimedium, and Astragalus have the potential to treat SANFH. Through the analysis of the competing endogenous RNA network mediated by SANFH-related long non-coding RNAs, potential disease targets, signaling pathways, and potential therapeutic traditional Chinese medicines can be identified, providing a reference for further clarifying its pathogenesis in subsequent experimental research.

Key words: steroid-induced necrosis of the femoral head, long non-coding RNA, competing endogenous RNA, bioinformatics, traditional Chinese medicine forecast

中图分类号: