[1] CHAPPLE CC, SRIVASTAVA M, HUNTER N. Failure of macrophage activation in destructive periodontal disease. J Pathol. 1998;186(3): 281-286.
[2] HIENZ SA, PALIWAL S, IVANOVSKI S. Mechanisms of bone resorption in periodontitis. J Immunol Res. 2015;2015:615486.
[3] MOSSER DM, EDWARDS JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958-969.
[4] 周琦,孙慧娟,于栋华,等.巨噬细胞M1/M2型极化在不同疾病中的作用机制[J].中国药理学通报,2020,36(11):1502-1506.
[5] MUNOZ J, AKHAVAN NS, MULLINS AP, et al. Macrophage polarization and osteoporosis: a review. Nutrients. 2020;12(10):2999.
[6] ARANGO DUQUE G, DESCOTEAUX A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.
[7] WATANABE S, ALEXANDER M, MISHARIN AV, et al. The role of macrophages in the resolution of inflammation. J Clin Invest. 2019; 129(7):2619-2628.
[8] MURRAY PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541-566.
[9] SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425-6440.
[10] FUNES SC, RIOS M, ESCOBAR-VERA J, et al. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186-195.
[11] XU W, ZHAO X, DAHA MR, et al. Reversible differentiation of pro- and anti-inflammatory macrophages. Mol Immunol. 2013;53(3):179-186.
[12] YAO Y, XU XH, JIN L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 2019;10:792.
[13] 王乐旬,张盛昔,吴惠娟,等.巨噬细胞极化中特异性分子表达的实验研究[J].广东药科大学学报,2020,36(1):43-49.
[14] COLIN S, CHINETTI-GBAGUIDI G, STAELS B. Macrophage phenotypes in atherosclerosis. Immunol Rev. 2014;262(1):153-166.
[15] KONG X, GAO J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med. 2017;21(5):941-954.
[16] YASUDA H, SHIMA N, NAKAGAWA N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597-3602.
[17] SIMA C, GLOGAUER M. Macrophage subsets and osteoimmunology: tuning of the immunological recognition and effector systems that maintain alveolar bone. Periodontol 2000. 2013;63(1):80-101.
[18] ADAMOPOULOS IE, MELLINS ED. Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev Rheumatol. 2015;11(3):189-194.
[19] VAN RAEMDONCK K, UMAR S, PALASIEWICZ K, et al. CCL21/CCR7 signaling in macrophages promotes joint inflammation and Th17-mediated osteoclast formation in rheumatoid arthritis. Cell Mol Life Sci. 2020;77(7):1387-1399.
[20] MANTOVANI A, SICA A, SOZZANI S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677-686.
[21] SUN X, GAOJ, MENG X, et al. Polarized macrophages in periodontitis: characteristics, function, and molecular signaling. Front Immunol. 2021;12:763334.
[22] YU T, ZHAO L, HUANG X, et al. Enhanced activity of the macrophage m1/m2 phenotypes and phenotypic switch to M1 in periodontal infection. J Periodontol. 2016;87(9):1092-1102.
[23] CROTTI TN, DHARMAPATNI AA, ALIAS E, et al. Osteoimmunology: major and costimulatory pathway expression associated with chronic inflammatory induced bone loss. J Immunol Res. 2015;2015:281287.
[24] CHANG LY, LAI CH, KUO CH, et al. Recombinant thrombomodulin lectin-like domain attenuates Porphyromonas gingivalis lipopolysaccharide-induced osteoclastogenesis and periodontal bone resorption. J Periodontol. 2021;92(11):1622-1634.
[25] HAJISHENGALLIS G, DARVEAU RP, CURTIS MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717-725.
[26] BURNS E, BACHRACH G, SHAPIRA L, et al. Cutting Edge: TLR2 is required for the innate response to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption. J Immunol. 2006;177(12):8296-8300.
[27] PAGE RC. The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res. 1991;26(3 Pt 2):230-242.
[28] 潘佳慧,唐秋玲,李格格,等.巨噬细胞极化在牙龈卟啉单胞菌促进牙周炎发生发展中的作用[J].国际口腔医学杂志,2017,44(5): 533-537.
[29] LAM RS, O’BRIEN-SIMPSON NM, LENZO JC, et al. Macrophage depletion abates Porphyromonas gingivalis-induced alveolar bone resorption in mice. J Immunol. 2014;193(5):2349-2362.
[30] ZHUANG Z, YOSHIZAWA-SMITH S, GLOWACKI A, et al. Induction of M2 macrophages prevents bone loss in murine periodontitis models. J Dent Res. 2019;98(2):200-208.
[31] HE D, KOU X, LUO Q, et al. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. J Dent Res. 2015;94(1):129-139.
[32] 白林,辛月娇,段丁瑜,等.巨噬细胞功能和炎症消退机制及与牙周炎关系研究进展[J].华西口腔医学杂志,2017,35(4):427-432.
[33] BANERJEE S, BIEHL A, GADINA M, et al. JAK-STAT Signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017;77(5):521-546.
[34] 唐俭,陈旭昕,韩志海.巨噬细胞极化及极化调控的研究进展[J].转化医学杂志,2019,8(6):373-376.
[35] SOUZA JA, ROSSA C Jr, GARLET GP, et al. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. J Appl Oral Sci. 2012;20(2):128-138.
[36] OH H, PARK SH, KANG MK, et al. Asaronic acid attenuates macrophage activation toward M1 phenotype through inhibition of NF-κB pathway and JAK-STAT signaling in glucose-loaded murine macrophages. J Agric Food Chem. 2019;67(36):10069-10078.
[37] NI Y, ZHUGE F, NAGASHIMADA M, et al. Novel action of carotenoids on non-alcoholic fatty liver disease: macrophage polarization and liver homeostasis. Nutrients. 2016;8(7):391.
[38] GARCIA DE AQUINO S, MANZOLLI LEITE FR, STACH-MACHADO DR, et al. Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life Sci. 2009;84(21-22):745-754.
[39] CHACES DE SOUZA JA, NOGUEIRA AV, CHAVES DE SOUZA PP, et al. SOCS3 expression correlates with severity of inflammation, expression of proinflammatory cytokines, and activation of STAT3 and p38 MAPK in LPS-induced inflammation in vivo. Mediators Inflamm. 2013;2013: 650812.
[40] 张洁,田艾.M2巨噬细胞参与骨再生相关信号通路的作用与机制[J].中国组织工程研究,2023,27(2):314-321.
[41] WANG N, GAO J, JIA M, et al. Exendin-4 induces bone marrow stromal cells migration through bone marrow-derived macrophages polarization via PKA-STAT3 signaling pathway. Cell Physiol Biochem. 2017;44(5):1696-1714.
[42] 吴燕,张定然,王新慧,等.巨噬细胞极化及其对炎性疾病作用的研究进展[J].中国畜牧杂志,2021,57(7):22-26.
[43] PAPADOPOULOS G, WEINBERG EO, MASSARI P, et al. Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. J Immunol. 2013;190(3):1148-1157.
[44] JAIN S, COATS SR, CHANG AM, et al. A novel class of lipoprotein lipase-sensitive molecules mediates Toll-like receptor 2 activation by Porphyromonas gingivalis. Infect Immun. 2013;81(4):1277-1286.
[45] LAWRENCE T, NATOLI G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011; 11(11):750-761.
[46] LINTON MF, MOSLEHI JJ, BABAEV VR. Akt signaling in macrophage polarization,survival,and atherosclerosis. Int J Mol Sci. 2019;20(11): 2703.
[47] TROUTMAN TD, BAZAN JF, PASARE C. Toll-like receptors,signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle. 2012;11(19):3559-3553567.
[48] ARRANZ A, DOXAKI C, VERGADI E, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci U S A. 2012;109(24):9517-9522.
[49] BAO L, LI X. MicroRNA-32 targeting PTEN enhances M2 macrophage polarization in the glioma microenvironment and further promotes the progression of glioma. Mol Cell Biochem. 2019;460(1-2):67-79.
[50] VERGADI E, IERONYMAKI E, LYRONI K, et al. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017; 198(3):1006-1014.
[51] WU L, GUO Q, Yang J, et al. Tumor necrosis factor alpha promotes osteoclast formation via PI3K/Akt pathway-mediated blimp1 expression upregulation. J Cell Biochem. 2017;118(6):1308-1315.
[52] ZHAO SJ, KONG FQ, JIE J, et al. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics. 2020;10(1):17-35.
[53] DISKIN C, PALSSON-MCDERMOTT EM. Metabolic modulation in macrophage effector function. Front Immunol. 2018;9:270.
[54] MEISTER M, TOMASOVIC A, BANNING A, et al. Mitogen-activated protein (map) kinase scaffolding proteins: a recount. Int J Mol Sci. 2013; 14(3):4854-4884.
[55] 赵娜,方慧,唐亚平,等.MAPK信号转导通路与慢性牙周炎的相关研究进展[J].口腔医学研究,2017,33(9):1012-1015.
[56] LI Q, VALERIO MS, KIRKWOOD KL. MAPK usage in periodontal disease progression. J Signal Transduct. 2012;2012:308943.
[57] WANG L, ZHENG J, PATHAK JL, et al. SLIT2 overexpression in periodontitis intensifies inflammation and alveolar bone loss, possibly via the activation of MAPK pathway. Front Cell Dev Biol. 2020;8:593.
[58] SON HJ, EO HJ, PARK GH, et al. Heracleum moellendorffii root extracts exert immunostimulatory activity through TLR2/4-dependent MAPK activation in mouse macrophages, RAW264.7 cells. Food Sci Nutr. 2020;9(1):514-521.
[59] SUN W, ZHANG H, WANG H, et al. Targeting notch-activated M1 macrophages attenuates joint tissue damage in a mouse model of inflammatory arthritis. J Bone Miner Res. 2017;32(7):1469-1480.
[60] 刘利萍,张焱皓,李茂,等.调控巨噬细胞极化的相关信号通路及其调节机制研究进展[J].中国免疫学杂志,2021,37(6):747-753.
[61] REGAN J, LONG F. Notch signaling and bone remodeling. Curr Osteoporos Rep. 2013;11(2):126-129.
[62] KRAUSGRUBER T, BLAZEK K, SMALLIE T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12(3):231-238.
[63] ZHAO B, TAKAMI M, YAMADA A, et al. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med. 2009;15(9):1066-1071.
[64] ZHAO B, GRIMES SN, LI S, et al. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med. 2012;209(2):319-334.
[65] SHAIK-DASTHAGIRISAHEB YB, HUANG N, GIBSON FC 3RD. Inflammatory response to Porphyromonas gingivalis partially requires interferon regulatory factor (IRF) 3. Innate Immun. 2014;20(3):312-319.
[66] 魏文燕,陈建英.非编码RNA调控巨噬细胞极化的研究进展[J].山东医药,2018,58(29):90-94.
[67] SELF-FORDHAM JB, NAQVI AR, UTTAMANI JR, et al. Microrna: dynamic regulators of macrophage polarization and plasticity. Front Immunol. 2017;8:1062.
[68] LI J, JIN F, CAI M, et al. LncRNA nron inhibits bone resorption in periodontitis. J Dent Res. 2022;101(2):187-195.
[69] WANG Q, XIE Y, HE Q, et al. LncRNA-Cox2 regulates macrophage polarization and inflammatory response through the CREB-C/EBPβ signaling pathway in septic mice. Int Immunopharmacol. 2021;101(Pt B): 108347.
[70] MARQUES-ROCHA JL, SAMBLAS M, MILAGRO FI, et al. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 2015;29(9): 3595-3611.
[71] DU W, WANG L, LIAO Z, et al. Circ_0085289 alleviates the progression of periodontitis by regulating let-7f-5p/SOCS6 pathway. Inflammation. 2021;44(4):1607-1619.
[72] BANERJEE S, XIE N, CUI H, et al. MicroRNA let-7c regulates macrophage polarization. J Immunol. 2013;190(12):6542-6549.
[73] ZHANG D, CAO X, LI J, et al. MiR-210 inhibits NF-κB signaling pathway by targeting DR6 in osteoarthritis.Sci Rep. 2015;5:12775.
[74] MA S, LIU M, XU Z, et al. A double feedback loop mediated by microRNA-23a/27a/24-2 regulates M1 versus M2 macrophage polarization and thus regulates cancer progression. Oncotarget. 2016; 7(12):13502-13519.
[75] GANTA VC, CHOI MH, KUTATELADZE A, et al. A microRNA93-interferon regulatory factor-9-immunoresponsive gene-1-itaconic acid pathway modulates M2-like macrophage polarization to revascularize ischemic muscle. Circulation. 2017;135(24):2403-2425.
[76] SAHU SK, KUMAR M, CHAKRABORTY S, et al. MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection. PLoS Pathog. 2017;13(5): e1006410.
[77] JIANG Y, FU J, DU J, et al. DNA methylation alterations and their potential influence on macrophage in periodontitis. Oral Dis. 2022; 28(2):249-263.
[78] JONES PA, LIANG G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet. 2009;10(11):805-811.
[79] LINDROTH AM, PARK YJ. Epigenetic biomarkers: a step forward for understanding periodontitis. J Periodontal Implant Sci. 2013;43(3): 111-120.
[80] LARSSON L, CASTILHO RM, GIANNOBILE WV. Epigenetics and its role in periodontal diseases: a state-of-the-art review. J Periodontol. 2015; 86(4):556-568.
[81] YANG X, WANG X, LIU D, et al. Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b. Mol Endocrinol. 2014;28(4): 565-574.
[82] MIAO D, GODOVIKOVA V, QIAN X, et al. Treponema denticola upregulates MMP-2 activation in periodontal ligament cells: interplay between epigenetics and periodontal infection. Arch Oral Biol. 2014; 59(10):1056-1064.
[83] WANG X, CAO Q, YU L, et al. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight. 2016;1(19):e87748.
[84] ZHOU D, YANG K, CHEN L, et al. Promising landscape for regulating macrophage polarization: epigenetic viewpoint. Oncotarget. 2017; 8(34):57693-57706.
[85] UEHARA O, ABIKO Y, SAITOH M, et al. Lipopolysaccharide extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related transcription factor 2 in human periodontal fibroblasts. J Microbiol Immunol Infect. 2014;47(3):176-181.
[86] DASKALAKI MG, TSATSANIS C, KAMPRANIS SC. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. J Cell Physiol. 2018;233(9):6495-6507.
[87] XUAN D, HAN Q, TU Q, et al. Epigenetic modulation in periodontitis: interaction of adiponectin and JMJD3-IRF4 axis in macrophages. J Cell Physiol. 2016;231(5):1090-1096.
[88] GARRETT S, DIETZMANN-MAURER K, SONG L, et al. Polarization of primary human monocytes by IFN-gamma induces chromatin changes and recruits RNA Pol II to the TNF-alpha promoter. J Immunol. 2008;180(8):5257-5266.
[89] XU G, LIU G, XIONG S, et al. The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) production. J Biol Chem. 2015;290(9):5414-5423.
[90] 任飞龙,罗环宇,郑适泽,等.C3a-C3aR轴通过巨噬细胞向M1型极化对慢性牙周炎模型小鼠炎症反应和组织损伤的影响[J].吉林大学学报(医学版),2022,48(1):1-8.
[91] NAKAO Y, FUKUDA T, ZHANG Q, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021;122:306-324.
[92] HUANG Y, TIAN C, LI Q, et al. TET1 Knockdown Inhibits Porphyromonas gingivalis LPS/IFN-γ-Induced M1 Macrophage Polarization through the NF-κB Pathway in THP-1 Cells. Int J Mol Sci. 2019;20(8):2023.
[93] RAMIREZ-CARROZZI VR, NAZARIAN AA, LI CC, et al. Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev. 2006;20(3):282-296.
[94] BAKER RG, HAYDEN MS, GHOSH S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011;13(1):11-22.
[95] XU H, ZHU J, SMITH S, et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol. 2012;13(7):642-650.
[96] ZHONG Y, YI C. MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. Biosci Rep. 2016;36(4):e00363.
[97] LIANG YB, TANG H, CHEN ZB, et al. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type. Mol Med Rep. 2017;16(5):6405-6411.
|