[1] SUNG H, FERLAY J, SIEGEL RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249.
[2] JIN G, LV J, YANG M, et al. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study. Lancet Oncol. 2020;21(10):1378-1386.
[3] MACHLOWSKA J, BAJ J, SITARZ M, et al. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int J Mol Sci. 2020;21(11):4012.
[4] 陈彦臻,刘沈林,邹玺.胃癌干细胞与上皮间质转化研究进展[J].中华肿瘤防治杂志,2018,25(10):750-754.
[5] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253.
[6] 尹硕鑫,张涛,卢鑫,等.粪菌移植研究的文献计量学和可视化分析[J/OL].微生物学通报,https://doi.org/10.13344/j.microbiol.china.211109.
[7] 肖鹏飞.全球黄曲霉毒素研究的文献计量学分析[J/OL].食品科学,http://kns.cnki.net/kcms/detail/11.2206.TS.20210911.0958.010.html.
[8] ZHANG N, NG AS, CAI S, et al. Novel therapeutic strategies: targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 2021;22(8):e358-e368.
[9] PAN G, LIU Y, SHANG L, et al. EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun (Lond). 2021;41(3):199-217.
[10] ZHANG S, SHANG Y, CHEN T, et al. Human circulating and tissue gastric cancer stem cells display distinct epithelial-mesenchymal features and behaviors. J Cancer Res Clin Oncol. 2017;143(9):1687-1699.
[11] SUN L, WANG Q, CHEN B, et al. Human Gastric Cancer Mesenchymal Stem Cell-Derived IL15 Contributes to Tumor Cell Epithelial-Mesenchymal Transition via Upregulation Tregs Ratio and PD-1 Expression in CD4+T Cell. Stem Cells Dev. 2018;27(17):1203-1214.
[12] SUN LF, YANG K, WANG YG, et al. The Role of HER2 in Self-Renewal, Invasion, and Tumorigenicity of Gastric Cancer Stem Cells. Front Oncol. 2020;10:1608.
[13] BIE Q, LI X, LIU S, et al. YAP promotes self-renewal of gastric cancer cells by inhibiting expression of L-PTGDS and PTGDR2. Int J Clin Oncol. 2020;25(12):2055-2065.
[14] WANG G, SUN Q, ZHU H, et al. The stabilization of yes-associated protein by TGFβ-activated kinase 1 regulates the self-renewal and oncogenesis of gastric cancer stem cells. J Cell Mol Med. 2021;25(14): 6584-6601.
[15] WU L, ZHANG X, ZHENG L, et al. RIPK3 Orchestrates Fatty Acid Metabolism in Tumor-Associated Macrophages and Hepatocarcinogenesis. Cancer Immunol Res. 2020;8(5):710-721.
[16] HE W, LIANG B, WANG C, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 2019;38(23):4637-4654.
[17] WANG L, LI C, SONG Y, et al. Inhibition of carnitine palmitoyl transferase 1A-induced fatty acid oxidation suppresses cell progression in gastric cancer. Arch Biochem Biophys. 2020;696:108664.
[18] WALCHER L, KISTENMACHER AK, SUO H, et al. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol. 2020;11:1280.
[19] APTE RS, CHEN DS, FERRARA N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248-1264.
[20] GEINDREAU M, GHIRINGHELLI F, BRUCHARD M. Vascular Endothelial Growth Factor, a Key Modulator of the Anti-Tumor Immune Response. Int J Mol Sci. 2021;22(9):4871.
[21] COMAZZETTO S, SHEN B, MORRISON SJ. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev Cell. 2021;56(13):1848-1860.
[22] LIZÁRRAGA-VERDUGO E, AVENDAÑO-FÉLIX M, BERMÚDEZ M, et al. Cancer Stem Cells and Its Role in Angiogenesis and Vasculogenic Mimicry in Gastrointestinal Cancers. Front Oncol. 2020;10:413.
[23] GARZA TREVIÑO EN, GONZÁLEZ PD, VALENCIA SALGADO CI, et al. Effects of pericytes and colon cancer stem cells in the tumor microenvironment. Cancer Cell Int. 2019;19:173.
[24] YAN H, BU P. Non-coding RNAs in cancer stem cells. Cancer Lett. 2018; 421:121-126.
[25] STAVAST CJ, ERKELAND SJ. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells. 2019;8(11):1465.
[26] FAN D, REN B, YANG X, et al. Upregulation of miR-501-5p activates the wnt/β-catenin signaling pathway and enhances stem cell-like phenotype in gastric cancer. J Exp Clin Cancer Res. 2016;35(1):177.
[27] RASMUSSEN TP. Parallels between artificial reprogramming and the biogenesis of cancer stem cells: Involvement of lncRNAs. Semin Cancer Biol. 2019;57:36-44.
[28] HUI Y, YANG Y, LI D, et al. LncRNA FEZF1-AS1 Modulates Cancer Stem Cell Properties of Human Gastric Cancer Through miR-363-3p/HMGA2. Cell Transplant. 2020;29:963689720925059.
[29] 夏荣钧,欧英富,邢维山,等.长链非编码RNA H19促进胃癌干细胞的增殖和转移[J].中国组织工程研究,2019,23(13):2022-2027.
[30] LIM JR, MOUAWAD J, GORTON OK, et al. Cancer stem cell characteristics and their potential as therapeutic targets. Med Oncol. 2021;38(7):76.
[31] BECERRIL-RICO J, ALVARADO-ORTIZ E, TOLEDO-GUZMÁN ME, et al. The cross talk between gastric cancer stem cells and the immune microenvironment: a tumor-promoting factor. Stem Cell Res Ther. 2021;12(1):498.
[32] 代俊泽,金海峰.胃癌干细胞标志物的研究进展[J].中国老年学杂志,2020,40(24):5364-5371.
[33] 李向辉,王贵吉.胃癌干细胞CSC-G在胃癌侵袭和转移中的作用[J].中国组织工程研究,2016,20(11):1597-1602.
[34] SONBOL MB, AHN DH, BEKAII-SAAB T. Therapeutic Targeting Strategies of Cancer Stem Cells in Gastrointestinal Malignancies. Biomedicines. 2019;7(1):17.
[35] RUGGIERI V, RUSSI S, ZOPPOLI P, et al. The Role of MicroRNAs in the Regulation of Gastric Cancer Stem Cells: A Meta-Analysis of the Current Status. J Clin Med. 2019;8(5):639.
[36] CHEN B, CAI T, HUANG C, et al. G6PD-NF-κB-HGF Signal in Gastric Cancer-Associated Mesenchymal Stem Cells Promotes the Proliferation and Metastasis of Gastric Cancer Cells by Upregulating the Expression of HK2. Front Oncol. 2021;11:648706.
[37] LI W, ZHANG X, WU F, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10(12):918.
[38] 张丽贤,张宁,袁双珍,等.胃癌干细胞在肿瘤侵袭转移及对血管形成的影响[J].中国组织工程研究,2016,20(32): 4738-4744.
[39] HUANG C, YUAN W, LAI C, et al. EphA2-to-YAP pathway drives gastric cancer growth and therapy resistance. Int J Cancer. 2020;146(7):1937-1949.
[40] CHOI HJ, JHE YL, KIM J, et al. FoxM1-dependent and fatty acid oxidation-mediated ROS modulation is a cell-intrinsic drug resistance mechanism in cancer stem-like cells. Redox Biol. 2020;36:101589.
[41] CARLI ALE, AFSHAR-STERLE S, RAI A, et al. Cancer stem cell marker DCLK1 reprograms small extracellular vesicles toward migratory phenotype in gastric cancer cells. Proteomics. 2021;21(13-14): e2000098.
[42] HASSN MESRATI M, SYAFRUDDIN SE, MOHTAR MA, et al. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules. 2021; 11(12):1850.
[43] BEKAII-SAAB T, EL-RAYES B. Identifying and targeting cancer stem cells in the treatment of gastric cancer. Cancer. 2017;123(8):1303-1312.
[44] SOLEIMANI A, DADJOO P, AVAN A, et al. Emerging roles of CD133 in the treatment of gastric cancer, a novel stem cell biomarker and beyond. Life Sci. 2022;293:120050.
[45] HWANG GR, YUEN JG, JU J. Roles of microRNAs in Gastrointestinal Cancer Stem Cell Resistance and Therapeutic Development. Int J Mol Sci. 2021;22(4):1624.
|