中国组织工程研究 ›› 2021, Vol. 25 ›› Issue (7): 1019-1025.doi: 10.3969/j.issn.2095-4344.2166

• 骨髓干细胞 bone marrow stem cells • 上一篇    下一篇

胶质细胞神经营养因子诱导骨髓间充质干细胞向功能性神经元分化的机制

朱雪芬1,黄  成1,丁  健1,戴永平1,刘元兵1,乐礼祥1,王亮亮1,杨建东2   

  1. 1如皋市人民医院,江苏省如皋市   226500;2江苏省苏北人民医院脊柱外科,江苏省扬州市   225000
  • 收稿日期:2020-02-12 修回日期:2020-02-22 接受日期:2020-04-03 出版日期:2021-03-08 发布日期:2020-12-08
  • 通讯作者: 杨建东,主任医师,副教授,硕士生导师,江苏省苏北人民医院脊柱外科,江苏省扬州市 225000
  • 作者简介:朱雪芬,女,1992年生,江苏省如皋市人,汉族,2014年扬州大学毕业,主要从事临床护理专业研究。
  • 基金资助:
    国家自然科学基金面上项目(81071466);扬州市十三五科教兴卫领军人才计划资助(扬卫科教[2018]6号);南通市科技局科研基金项目(GJZ16044);如皋市科研计划项目 (SRG(15) 3015)

Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor

Zhu Xuefen1, Huang Cheng1, Ding Jian1, Dai Yongping1, Liu Yuanbing1, Le Lixiang1, Wang Liangliang1, Yang Jiandong2   

  1. 1Rugao People’s Hospital, Rugao 226500, Jiangsu Province, China; 2Department of Spine Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225000, Jiangsu Province, China
  • Received:2020-02-12 Revised:2020-02-22 Accepted:2020-04-03 Online:2021-03-08 Published:2020-12-08
  • Contact: Yang Jiandong, Chief physician, Associate professor, Master’s supervisor, Department of Spine Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225000, Jiangsu Province, China
  • About author:Zhu Xuefen, Rugao People’s Hospital, Rugao 226500, Jiangsu Province, China
  • Supported by:
    the National Natural Science Foundation of China, No. 81071466; the Science and Education Leading Talents Program for Invigorating Health of Yangzhou during 13th Five-Year Plan Period, No. [2018]6; the Science and Technology Program of Nantong City, No. GJZ16044; the Science and Technology Program of Rugao City, No. SRG(15)3015

摘要:

文题释义:
FM4-64:FM4-64以其亲脂尾部插入脂膜外叶,给予高K+刺激触发递质释放后部分FM4-64可随突触囊泡的内吞作用成为突触囊泡膜的一部分并进入神经末梢,此时FM4-64的荧光强度显著增强,残留在膜外叶的FM4-64以及游离于缓冲液中的FM4-64荧光极弱。因此,胞内的FM4-64荧光强度就可在一定程度上定量地反映高钾离子激发下神经元轴突囊泡胞吞程度,再次给予高K+刺激,FM4-64可随囊泡的胞吐与递质释放到突触间隙,荧光强度明显减弱。根据FM4-64荧光强度的变化可反映神经元突触囊泡活性。
Wnt信号通路:主要由3种分支通路组成,分别为Wnt/β-Catenin通路、Wnt/Ca2+通路、Wnt/PCP通路,其中最为重要的是Wnt/β-Catenin通路。该通路信号的接收和转导的受体主要由Frizzled基因家族和低密度脂蛋白受体相关的蛋白家族组成。研究发现Wnt基因的编码产物(Wnt-1、Wnt-2、1 Wnt-3、Wnt-3a、Wnt-5a)与上述受体结合后,激活靶细胞内含有PDZ 结构域的蛋白Dsh,Dsh可抑制β-catenin的降解,促进β-catenin在胞浆中稳定积累,β-catenin进入细胞核内激活LEF/TCF转录因子,上调cyclin D1等基因蛋白表达量,进而调控细胞生长、分化。

背景:胶质细胞神经营养因子在诱导骨髓间充质干细胞体外定向分化及促进神经元轴突再生过程中起到重要作用。
目的:观察过表达胶质细胞神经营养因子基因诱导骨髓间充质干细胞向神经元样细胞分化情况,检测分化后细胞突触功能及Wnt信号通路组分表达,初步探索骨髓间充质干细胞向成熟神经元分化机制。
方法:分离培养大鼠骨髓间充质干细胞,分为重组腺病毒载胶质细胞神经营养因子基因转染组(Ad-GDNF-BMSCs)、腺病毒转染对照组(Ad-BMSCs)及未转染对照组。Q-PCR检测各组骨髓间充质干细胞中胶质细胞神经营养因子基因相对表达量,免疫荧光技术检测各组细胞中β-catenin、cyclin D1、NeuN及MAP-2表达。高K+刺激诱导分化后细胞去极化反应,FM4-64标记分化后细胞突触囊泡活动。
结果与结论:①腺病毒载目的基因转染对骨髓间充质干细胞增殖无显著负面影响,转染后可有效促进骨髓间充质干细胞持续、高水平表达内源性胶质细胞神经营养因子基因;②在胶质细胞神经营养因子基因诱导作用下体外培养3 d,骨髓间充质干细胞可表达神经元特异性蛋白NeuN,且在细胞胞质中检测到β-catenin蛋白表达;体外培养7 d后,骨髓间充质干细胞表达成熟神经元标记蛋白MAP-2,细胞胞体皱缩明显,胞体周围出现神经元轴突样结构,并在细胞胞质中检测到β-catenin、胞核中检测到cyclin D1表达,而Ad-BMSCs组及未转染对照组未见NeuN、MAP-2、β-catenin、cyclin D1表达且细胞仍维持梭形形态;③体外培养11 d后,Ad-GDNF-BMSCs组细胞呈现典型的神经元突起或轴突并相互连接成网状结构,可被FM4-64标记显示红色荧光,给予高K+刺激诱发细胞产生动作电位后轴突发生突触囊泡活动,可见FM4-64红色荧光逐渐衰减,同条件下Ad-BMSCs转染组及未转染组细胞未见FM4-64荧光标记的突触囊泡活动;④结果表明,胶质细胞神经营养因子持续诱导作用可促进骨髓间充质干细胞分化为具备突触循环功能的成熟神经元,该作用可能是通过经典的Wnt/β-catenin信号通路进行的。
https://orcid.org/0000-0002-7433-0999(朱雪芬) 

中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 干细胞, 骨髓间充质干细胞, 神经元, 因子, 突触, 轴突, 通路

Abstract: BACKGROUND: Glial cell line derived neurotrophic factor (GDNF) plays an important role in inducing the differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro and promoting the regeneration of neuron axons.
OBJECTIVE: To observe BMSCs differentiation induced by over-expression of GDNF gene, detect synaptic function of cells and expression of Wnt signaling pathway components after differentiation, and preliminarily explore the mechanism of BMSCs differentiation into mature neurons.
METHODS:  Rat BMSCs were isolated and cultured, and further divided into recombinant adenovirus-containing GDNF gene transfection group (Ad-GDNF-BMSCs), adenovirus transfection control group (Ad-BMSCs), and untransfected control group. The relative expression of GDNF gene in BMSCs of each group was detected by Q-PCR, and the expression of β-catenin, cyclin D1, NeuN and MAP-2 was detected by immunofluorescence technology in each group. High K+ stimulation induced cell depolarization response after differentiation, and FM4-64 marks synaptic vesicle activity of differentiated cells.
RESULTS AND CONCLUSION: (1) The adenovirus-transfected gene had no significant negative effect on the proliferation of BMSCs. BMSCs could express endogenous GDNF gene continuously and at high levels. (2) Under the induction of GDNF gene, BMSCs could express neuron-specific protein NeuN after 3 days cultivation in vitro. The expression of β-catenin protein also could be detected in the cytoplasm of cells. After 7 days cultivation in vitro culture, BMSCs expressed the mature neuronal marker protein MAP-2, and the cell body contracted significantly. Neuron axon-like structures appeared around the cell body. Moreover, β-catenin and cyclin D1 were respectively detected in the cell cytoplasm and the nucleus, while the expression levels of NeuN, MAP-2, β-catenin, and cyclin D1 were not observed in Ad-BMSCs and untransfected control groups, and the cells remained spindle-shaped. (3) After 11 days of in vitro culture, the cells in the Ad-GDNF-BMSCs group showed typical neuronal processes or axons and connected to each other into a network structure, which could be labeled with FM4-64 to show red fluorescence, and induced by high K+ stimulation to induce action potentials in the cells. Synaptic vesicle activity in posterior axons showed FM4-64 red fluorescence gradually decaying. Under the same conditions, cells in the Ad-GDNF-BMSCs group and untransfected control group did not present FM4-64 fluorescently labeled synaptic vesicle activity. (4) Continuous GDNF induction can promote BMSCs differentiated into mature neurons with synaptic cycle function, and may be carried out through the classic Wnt/β-catenin signaling pathway.

Key words: stem cells, bone marrow mesenchymal stem cells, neurons, factors, synapses, axons, pathways

中图分类号: