[1] Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6(7):2397-2404.[2] Meyer K, Palmer JW. The polysaccharide of the vitreous humor. J Biol Chem. 1934;107(3):629-634.[3] Furlan S, La Penna G, Perico A, et al. Hyaluronan chain conformation and dynamics. Carbohydr Res. 2005;340(5):959-970.[4] Yoneda M, Shimizu S, Nishi Y, et al. Hyaluronic acid-dependent change in the extracellular matrix of mouse dermal fibroblasts that is conducive to cell proliferation. J Cell Sci. 1988;90 (2):275.[5] 拉希德,刘世清.透明质酸对体外培养大鼠退变关节软骨细胞的影响[J].武汉大学学报(医学版),2007,28(2):177-180.[6] Turley EA. Hyaluronan and cell locomotion. Cancer Metastasis Rev. 1992;11(1):21.[7] Suzuki Y, Yamaguchi T. Effects of hyaluronic acid on macrophage phagocytosis and active oxygen release. Agents Actions. 1993;38(1): 32-37.[8] Lisignoli G, Grassi F, Zini N, et al. Anti‐Fas–induced apoptosis in chondrocytes reduced by hyaluronan: Evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement. Arthritis Rheumatol. 2001;44(8):1800-1807.[9] Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol. 2002;21(1):25-29.[10] Patel SR, Malhotra A, White DP, et al. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: A systematic review. BMC Musculoskelet Disord. 2015;16(1):321.[11] Sá MA, Ribeiro HJ, Valverde TM, et al. Single-walled carbon nanotubes functionalized with sodium hyaluronate enhance bone mineralization. Braz J Med Biol Res. 2016;49(2): e4888.[12] Khorshidi HR, Kasraianfard A, Derakhshanfar A, et al. Evaluation of the effectiveness of sodium hyaluronate, sesame oil, honey, and silver nanoparticles in preventing postoperative surgical adhesion formation. An experimental study. Acta Cir Bras. 2017;32(8):626.[13] Mendes RM, Silva GA, Lima MF, et al. Sodium hyaluronate accelerates the healing process in tooth sockets of rats. Arch Oral Biol. 2008;53(12):1155-1162.[14] Fraser J, Laurent T, Laurent U. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242(1):27-33.[15] 蔺栋鹏,吕瑾茹,赵天一,等.透明质酸、TGF-β1对下颌骨髁突软骨增殖分化的影响[J].实用口腔医学杂志, 2017,33(5):584-588.[16] 陈明伟,范彬彬,卢华定.新型透明质酸改性的CS-g-PEI/pDNA的构建及介导转染软骨细胞的体外研究[J].中国医药导报, 2017,14(21):4-9.[17] Sadikoglu TB, Nalbantgil D, Ulkur F, et al. Effect of hyaluronic acid on bone formation in the expanded interpremaxillary suture in rats. Orthod Craniofac Res. 2016;19(3):154-161.[18] Kim JJ, Song HY, Ben AH, et al. Hyaluronic acid improves bone formation in extraction sockets with chronic pathology: a pilot study in dogs. J Periodontol. 2016;87(7):790-795.[19] Fujioka-Kobayashi M, Schaller B, Kobayashi E, et al. Hyaluronic acid gel-based scaffolds as potential carrier for growth factors: an in vitro bioassay on its osteogenic potential. J Clin Med. 2016;5(12):E112.[20] Zhao N, Wang X, Qin L, et al. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro. Biochem Biophys Res Commun. 2015;465(3): 569-574.[21] Neunzehn J, Szuwart T, Wiesmann HP. Eggshells as natural calcium carbonate source in combination with hyaluronan as beneficial additives for bone graft materials, an in vitro study. Head Face Med. 2015;11:12.[22] Mladenovic Z, Saurel AS, Berenbaum F, et al. Potential role of hyaluronic acid on bone in osteoarthritis: matrix metalloproteinases, aggrecanases, and RANKL expression are partially prevented by hyaluronic acid in interleukin 1-stimulated osteoblasts. J Rheumatol. 2014;41(5):945-954.[23] Boeckel DG, Shinkai RS, Grossi ML, et al. In vitro evaluation of cytotoxicity of hyaluronic acid as an extracellular matrix on OFCOL II cells by the MTT assay. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117(6):e423-428.[24] 申德山,刘亚蕊,张清彬,等.牙周膜干细胞移植促进兔牙槽突裂成骨修复研究[J].中国实用口腔科杂志,2013,2:96-99.[25] 聂素云.改性透明质酸薄膜的体外释药性能研究[J].中国药学杂志, 2012, 47(19): 1558-1560.[26] 岩晓丽,冯玉杰,卢伟,等.胶原/氧化透明质酸复合水凝胶支架的制备与表征.中国实用医药, 2011,6(29):3-5.[27] Cui N, Qian J, Xu W, et al. Preparation, characterization, and biocompatibility evaluation of poly(Nvarepsilon-acryloyl-L-lysine)/ hyaluronic acid interpenetrating network hydrogels. Carbohydr Polym. 2016,136:1017-1026.[28] Jing J, Fournier A, Szarpak-Jankowska A, et al. Type, density, and presentation of grafted adhesion peptides on polysaccharide-based hydrogels control preosteoblast behavior and differentiation. Biomacromolecules. 2015;16(3):715-722.[29] Wu AT, Aoki T, Sakoda M, et al. Enhancing osteogenic differentiation of MC3T3-E1 cells by immobilizing inorganic polyphosphate onto hyaluronic acid hydrogel. Biomacromolecules. 2015;16(1):166-173.[30] Mermerkaya MU, Doral MN, Karaaslan F, et al. Scintigraphic evaluation of the osteoblastic activity of rabbit tibial defects after HYAFF11 membrane application. J Orthop Surg Res. 2016;11(1):57.[31] Picke AK, Salbach-Hirsch J, Hintze V, et al. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function. Biomaterials. 2016;96:11-23.[32] Mathews S, Mathew SA, Gupta PK, et al. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells. J Tissue Eng Regen Med. 2014;8(2):143-152.[33] Hempel U, Preissler C, Vogel S, et al. Artificial extracellular matrices with oversulfated glycosaminoglycan derivatives promote the differentiation of osteoblast-precursor cells and premature osteoblasts. Biomed Res Int. 2014;2014:938368.[34] Salbach-Hirsch J, Ziegler N, Thiele S, et al. Sulfated glycosaminoglycans support osteoblast functions and concurrently suppress osteoclasts. J Cell Biochem. 2014;115(6):1101-1111.[35] Salbach-Hirsch J, Samsonov SA, Hintze V, et al. Structural and functional insights into sclerostin-glycosaminoglycan interactions in bone. Biomaterials. 2015;67:335-345.[36] Sujana A, Venugopal JR, Velmurugan B, et al. Hydroxyapatite- intertwined hybrid nanofibres for the mineralization of osteoblasts. J Tissue Eng Regen Med. 2017;11(6):1853-1864.[37] Jensen J, Kraft DC, Lysdahl H, et al. Functionalization of polycaprolactone scaffolds with hyaluronic acid and beta-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng Part A. 2015;21(3-4):729-739.[38] Hu Y, Chen J, Fan T, et al. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/ chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Colloids Surf B Biointerfaces. 2017;157:93-100.[39] Rammal H, Dubus M, Aubert L, et al. Bioinspired nanofeatured substrates: suitable environment for bone regeneration. ACS Appl Mater Interfaces. 2017;9(14):12791-12801.[40] Nath SD, Abueva C, Kim B, et al. Chitosan-hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2. Carbohydr Polym. 2015;115:160-169.[41] Zhang Y, Hu Y, Luo Z, et al. Simultaneous delivery of BMP-2 factor and anti-osteoporotic drugs using hyaluronan-assembled nanocomposite for synergistic regulation on the behaviors of osteoblasts and osteoclasts in vitro. J Biomater Sci Polym Ed. 2015;26(5):290-310.[42] Chen H, Xing X, Jia Y, et al. Nano-Fibrous Biopolymer Hydrogels via Biological Conjugation for Osteogenesis. J Nanosci Nanotechnol. 2016;16(6):5562-5568.[43] Jung A, Makkar P, Amirian J, et al. A novel hybrid multichannel biphasic calcium phosphate granule-based composite scaffold for cartilage tissue regeneration. J Biomater Appl. 2017:885328217741757.[44] Hamlet SM, Vaquette C, Shah A, et al. 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering. J Clin Periodontol. 2017;44(4):428-437.[45] Son SR, Sarkar SK, Nguyen-Thuy BL, et al. Platelet-rich plasma encapsulation in hyaluronic acid/gelatin-BCP hydrogel for growth factor delivery in BCP sponge scaffold for bone regeneration. J Biomater Appl.2015;29(7):988-1002.[46] Galli C, Parisi L, Piergianni M, Smerieri A, Passeri G, Guizzardi S, et al. Improved scaffold biocompatibility through anti-Fibronectin aptamer functionalization. Acta Biomater. 2016;42:147-156.[47] Galli C, Piergianni M, Piemontese M, et al. Periostin improves cell adhesion to implantable biomaterials and osteoblastic differentiation on implant titanium surfaces in a topography-dependent fashion. J Biomed Mater Res A. 2014;102(11):3855-3861.[48] Sauerova P, Pilgrova T, Pekar M, et al. Hyaluronic acid in complexes with surfactants: The efficient tool for reduction of the cytotoxic effect of surfactants on human cell types. Int J Biol Macromol. 2017;103: 1276-1284.[49] Bang S, Das D, Yu J, et al. Evaluation of MC3T3 cells proliferation and drug release study from sodium hyaluronate-1,4-butanediol diglycidyl ether patterned gel. Nanomaterials (Basel). 2017;7(10): E328. |