中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (3): 435-440.doi: 10.3969/j.issn.2095-4344.2016.03.024

• 生物材料综述 biomaterial review • 上一篇    下一篇

硅掺杂纳米羟基磷灰石:溶解度、抗折和抗压强度解析

程 瑶,王星星,汪大林   

  1. 解放军第二军医大学第一附属医院长海医院,上海市  200433
  • 收稿日期:2015-11-18 出版日期:2016-01-15 发布日期:2016-01-15
  • 通讯作者: 汪大林,博士,主任医师,解放军第二军医大学第一附属医院长海医院,上海市 200433
  • 作者简介:程瑶,女,1987年生,吉林省吉林市人,汉族,解放军第二军医大学在读硕士,主要从事修复与种植研究。
  • 基金资助:
    国家自然科学基金(51232007)

Silicon-doped nano-hydroxyapatite: solubility, anti-fracture and compressive strengths

Cheng Yao, Wang Xing-xing, Wang Da-lin   

  1. Changhai Hospital, the First Affiliated Hospital of Second Military Medical University of Chinese PLA, Shanghai 200433, China
  • Received:2015-11-18 Online:2016-01-15 Published:2016-01-15
  • Contact: Wang Da-lin, M.D., Chief physician, Changhai Hospital, the First Affiliated Hospital of Second Military Medical University of Chinese PLA, Shanghai 200433, China
  • About author:Cheng Yao, Studying for master’s degree, Changhai Hospital, the First Affiliated Hospital of Second Military Medical University of Chinese PLA, Shanghai 200433, China
  • Supported by:

    the National Natural Science Foundation of China, No. 51232007

摘要:

文章快速阅读:

文题释义:

硅掺杂纳米羟基磷灰石:其原理是采用不同方法将硅离子引入羟基磷灰石,用SiO44-取代羟基磷灰石晶体内部的PO43-或OH-,使硅离子并入羟基磷灰石晶格内部,从而引起羟基磷灰石表面形貌、颗粒大小、溶解度及生物活性的变化。

硅掺杂对羟基磷灰石机械强度的影响:纯羟基磷灰石材料抗折强度和抗压强度均较差。研究发现硅元素的掺杂,可以提高羟基磷灰石材料的抗折强度和抗压强度,为人工合成骨替代材料的研究带来了新契机。

 

背景:硅掺杂纳米羟基磷灰石具有良好的生物相容性和生物学活性,作为一种新兴生物学材料具有广泛应用前景。
目的:概述硅掺杂纳米羟基磷灰石的制备过程、原理、方法,以及不同掺杂方法对羟基磷灰石溶解度、表面形态及体内体外生物学效应的影响。
方法:由第一作者用计算机检索中国期刊全文数据库(1990至2015年)、Medline(1990至2015年)数据库,检索词分别为“硅、纳米羟基磷灰石、生物材料、生物学、组织工程、骨修复;silicon,nano-hydroxyapatite,biological material,tissue engineering,bone repair”。

结果与结论:硅掺杂纳米羟基磷灰石的制备方法可以分为液相法和固相法两大类。硅掺杂可增加纳米羟基磷灰石的溶解度、抗折和抗压强度,促进纳米羟基磷灰石的成骨作用,但不同掺杂方法和掺杂比重对羟基磷灰石的影响不同,还需要进一步的研究筛选与优化。 

ORCID: 0000-0002-7259-136X(程瑶)

关键词: 生物材料, 材料相容性, 硅元素, 羟基磷灰石, 生物学效应, 综述, 国家自然科学基金

Abstract:

BACKGROUND: Silicon-doped nano-hydroxyapatite has good biocompatibility and bioactivity, and has broad application prospect as a new biological material.
OBJECTIVE: To summarize the preparation process, principle, method of silicon-doped nano-hydroxyapatite and the effect of different doping methods on the solubility, surface morphology and the in vitro and in vivo biological effects of hydroxyapatite.
METHODS: The first author searched China National Knowledge Infrastructure (1990-2015), and Medline database (1990-2015) for related articles using the key words of “silicon, nano-hydroxyapatite, biological material,
biology, tissue engineering, bone repair” in Chinese and English, respectively.
RESULTS AND CONCLUSION: The preparation methods of silicon-doped nano-hydroxyapatite can be divided into two kinds: liquid phase method and solid phase method. Silicon doping can increase the solubility, anti-fracture and compressive strengths of nano-hydroxyapatite, and promote the osteogenesis of nano-hydroxyapatite, but the effects of different doping methods and specific gravity on the hydroxyapatite are different. Further research screening and optimization are still needed.