[1] Benencia F, Sprague L, McGinty J, et al. Dendritic cells the tumor microenvironment and the challenges for an effective antitumor vaccination. J Biomed Biotechnol. 2012;2012: 425-476.[2] Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265- 277.[3] Shurin MR, Gregory M, Morris JC, et al. Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? Expert Opin Biol Ther. 2010;10(11):1539-1553.[4] Jähnisch H, Füssel S, Kiessling A, et al. Dendritic cell-based immunotherapy for prostate cancer. Clin Dev Immunol. 2010; 2010:517493.[5] Van Nuffel AM, Benteyn D, Wilgenhof S, et al. Dendritic cells loaded with mRNA encoding full-length tumor antigens prime CD4+ and CD8+ T cells in melanoma patients. Mol Ther. 2012;20(5):1063-1074. [6] Alfaro C, Perez-Gracia JL, Suarez N, et al. Pilot clinical trial of type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, pegylated IFN, and cyclophosphamide for metastatic cancer patients. J Immunol. 2011;187(11):6130-6142. [7] Tan X, Wan Y. Enhanced protein expression by IRES-driven mRNA translation as a novel approach for in vitro loading dendritic cells with antigens. Human Immunol. 2008;69(1): 32-40.[8] Chen YY, Tan XH, Ma JY, et al. Zhongguo Zuzhi Gongcheng yu Linchuang Kangfu. 2010;14(23):4186-4190.陈媛媛,谭晓华,马晶莹.人白细胞介素12腺病毒载体构建及在人骨髓间充质干细胞中的表达[J].中国组织工程研究与临床康复, 2010,14(23):4186-4190.[9] Chen P, Tan XH, Ma JY, et al. Zhongguo Zuzhi Gongcheng yu Linchuang Kangfu Zazhi. 2009;13(19):3713-3718.陈鹏,谭晓华,马晶莹,等.5和5F35型腺病毒载体对人骨髓间充质干细胞转染效率的比较[J].中国组织工程与临床康复,2009, 13(19):3713-3718.[10] Boudreau JE, Bonehill A, Thielemans K, et al. Engineering Dendritic Cells to Enhance Cancer Immunotherapy. Mol Ther. 2011;19(5):841-853.[11] Xiao L, Joo KI, Lim M, et al. Dendritic cell-directed vaccination with a lentivector encoding PSCA for prostate cancer in mice. PLoS One. 2012;7(11):e48866.[12] Westwood JA, Darcy PK, Guru PM, et al. Three agonist antibodies in combination with high-dose IL-2 eradicate orthotopic kidney cancer in mice. J Transl Med. 2010;8:42.[13] Ellebaek E, Iversen TZ, Junker N, et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med. 2012;10:169.[14] Petrella T, Quirt I, Verma S, et al. Single-agent interleukin-2 in the treatment of metastatic melanoma: a systematic review. Cancer Treat Rev. 2007;33(5):484-496.[15] Eklund JW, Kuzel TM. A review of recent findings involving interleukin-2-based cancer therapy. Curr Opin Oncol. 2004; 16(6):542-546.[16] Gallagher DC, Bhatt RS, Parikh SM, et al. Angiopoietin 2 is a potential mediator of high-dose interleukin 2-induced vascular leak. Clin Cancer Res. 2007;13(7):2115-2120.[17] Dutcher JP. High-dose interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma: still the standard. Oncology (Williston Park). 2011;25(5):427-428.[18] Rosenberg SA, Sherry RM, Morton KE, et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specitic CD8+ T cells in patients with melanoma. J Immunol. 2005;175(9):6169-6176.[19] Antony GK, Dudek AZ. Interleukin 2 in cancer therapy. Curr Med Chem. 2010;17(29):3297-3302.[20] Powell DJ Jr, Rosenberg SA. Phenotypic and functional maturation of tumor antigen-reactive CD8+ T lymphocytes in patients undergoing multiple course peptide vaccination. J Immunother. 2004;27(1):36-47.[21] Driessens G, Nuttin L, Gras A, et al. Development of a successful antitumor therapeutic model combining in vivo dendritic cell vaccination with tumor irradiation and intratumoral GM-CSF delivery. Cancer Immunol Immunother. 2011;60(2):273-281.[22] Kayashima H, Toshima T, Okano S, et al. Intratumoral neoadjuvant immunotherapy using IL-12 and dendritic cells is an effective strategy to control recurrence of murine hepatocellular carcinoma in immunosuppressed mice. J Immunol. 2010;185(1):698-708.[23] Bristol JA, Zhu M, Ji H, et al. In vitro and in vivo activities of an oncolytic adenoviral vector designed to express GM-CSF. Mol Ther. 2003;7(6):755-764.[24] Trudel S, Trachtenberg J, Toi A, et al. A phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Ther. 2003;10(10):755-763.[25] Sangro B, Mazzolini G, Ruiz J, et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol. 2004;22(8):1389-1397.[26] Vardouli L, Lindqvist C, Vlahou K, et al. Adenovirus delivery of human CD40 ligand gene confers direct therapeutic effects on carcinomas. Cancer Gene Ther. 2009;16(11):848-860.[27] Zaiss AK, Liu Q, Bowen GP, et al. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol. 2002;76:4580-4590.[28] Schumacher L, Ribas A, Dissette VB, et al. Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. J Immunother. 2004;27: 191-200.[29] Xia D, Moyana T, Xiang J. Combinational adenovirus- mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res. 2006; 16(3): 241-259.[30] Choi IK, Lee JS, Zhang SN, et al. Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18Rα. Gene Ther. 2011;18(9):898-909. [31] Kim W, Seong J, Oh HJ, et al. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. J Radiat Res. 2011;52(5):646-654.[32] Zhang SN, Choi IK, Huang JH, et al. Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF.Mol Ther. 2011;19(8):1558- 1568.[33] Thorne SH, Negrin RS, Contag CH. Synergistic Antitumor Effects of Immune Cell-Viral Biotherapy. Science. 2006;311: 1780-1784.[34] Alcayaga-Miranda F, Cascallo M, Rojas JJ , et al. Osteosarcoma cells as carriers to allow antitumor activity of canine oncolytic adenovirus in the presence of neutralizing antibodies. Cancer Gene Ther. 2010;17:792-802.[35] Mader EK, Maeyama Y, Lin Y, et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res. 2009;15(23):7246-7255.[36] García-Castro J, Alemany R, Cascalló M, et al. Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther. 2010;17:476-483.[37] Licursi M, Christian SL, Pongnopparat T, et al. In vitro and in vivo comparison of viral and cellular internal ribosome entry sites for bicistronicvector expression. Gene Ther. 2011;18(6): 631-636.[38] Yang S, Cohen CJ, Peng PD, et al. Development of optimal bicistronic lentiviral vectors facilitates high-level TCR gene expression and robust tumor cell recognition. Gene Ther. 2008;15(21):1411-1423.[39] Mizuguchi H, Xu Z, Ishii-Watabe A, et al. IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther. 2000;1(4):376-382.[40] Ngoi SM, Chien AC, Lee CG. Exploiting internal ribosome entry sites in gene therapy vector design. Curr Gene Ther. 2004;4(1):15-31. |