中国组织工程研究 ›› 2020, Vol. 24 ›› Issue (24): 3828-3833.doi: 10.3969/j.issn.2095-4344.2749

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

基于不同应变判定准则模拟皮质骨断裂的准确性

王伟军1,刘  杰1,刘  军2,贾正斌3,范若寻1   

  1. 1吉林化工学院,汽车工程学院,吉林省吉林市  132022;2吉林大学第二医院,吉林省长春市  130025;3吉林大学,机械科学与工程学院,吉林省长春市  130025
  • 收稿日期:2019-10-15 修回日期:2019-10-19 接受日期:2019-12-06 出版日期:2020-08-28 发布日期:2020-08-13
  • 通讯作者: 范若寻,博士,讲师,吉林化工学院,汽车工程学院,吉林省吉林市 132022
  • 作者简介:王伟军,男,1972年生,吉林省吉林市人,汉族,2017年山东理工大学毕业,硕士,讲师,主要从事汽车碰撞安全与人体损伤力学相关研究。
  • 基金资助:
    吉林省教育厅科学技术项目(JJKH20180560KJ)

Simulation accuracy of cortical bone fracture based on different types of strain criterion

Wang Weijun1, Liu Jie1, Liu Jun2, Jia Zhengbin3, Fan Ruoxun1   

  1. 1School of Automotive Engineering, Jilin University of Chemical Technology, Jilin 132022, Jilin Province, China; 2the Second Hospital of Jilin University, Changchun 130025, Jilin Province, China; 3School of Mechanical Science and Engineering, Jilin University, Changchun 130025, Jilin Province, China
  • Received:2019-10-15 Revised:2019-10-19 Accepted:2019-12-06 Online:2020-08-28 Published:2020-08-13
  • Contact: Fan Ruoxun, PhD, Lecturer, School of Automotive Engineering, Jilin University of Chemical Technology, Jilin 132022, Jilin Province, China
  • About author:Wang Weijun, Master, Lecturer, School of Automotive Engineering, Jilin University of Chemical Technology, Jilin 132022, Jilin Province, China
  • Supported by:
    the Jilin Provincial Department of Education Science and Technology Project, No. JJKH20180560KJ

摘要:

文题释义:

基于等效应变断裂模拟:即在大鼠股骨皮质骨断裂模拟过程中,应用皮质骨有限元模型在外部载荷作用下所产生的等效应变数值,与皮质骨组织的失效应变进行对比,当等效应变数值大于皮质骨组织失效应变时,有限元模型内的单元便发生失效,直至失效单元达到一定数量,模型便发生整体失效,此过程为基于等效应变的断裂模拟。

基于主应变断裂模拟:即在大鼠股骨皮质骨断裂模拟过程中,应用皮质骨有限元模型在外部载荷作用下所产生的主应变数值,与皮质骨组织的失效应变进行对比,当主应变数值大于皮质骨组织失效应变时,有限元模型内的单元便发生失效,直至失效单元达到一定数量,模型便发生整体失效,此过程为基于主应变的断裂模拟。

背景:由于意外碰撞等外力因素所产生的皮质骨裂纹是引起骨折的重要原因之一,要防止此类骨折发生,首先需弄清不同载荷作用下皮质骨裂纹的产生与扩展机制。由于实验分析对样本具有破坏性,难以同时了解骨结构在断裂前后的内部力学状态,找到一种能够准确模拟皮质骨从裂纹产生、扩展,直至断裂过程的有限元方法就显得尤为重要。当前模拟方法主要应用主应变或等效应变判定模型单元力学状态,继而进行断裂模拟,却鲜有关于这2种应变进行模拟准确性的探究。

目的:验证应用主应变与等效应变进行皮质骨断裂模拟的准确程度。

方法:结合实验与仿真分析,应用主应变与等效应变进行皮质骨断裂模拟,将仿真与实验结果进行对比,确定应用哪种应变进行模拟更加准确。

结果与结论:①应用主应变模拟的皮质骨断裂时间要明显晚于应用等效应变;②通过与实验对比发现,相比主应变,应用等效应变进行仿真所得结果与实验值更为接近;③因此,应用等效应变进行皮质骨断裂模拟相对更加准确。

ORCID: 0000-0003-0313-1359(王伟军)

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱骨折;内固定;数字化骨科;组织工程

关键词:

皮质骨, 裂纹, 骨折, 三点弯曲, 主应变, 等效应变, 有限元分析, 断裂机制

Abstract:

BACKGROUND: Cortical bone crack caused by accident or other external factors is one of the main causes of fracture, so the mechanism of crack formation and propagation for cortical bone under different loads should be understood primarily to avoid fracture. Bone specimens may be destructed in experiments, which can lead to a difficulty to observe the interior mechanical state of bone structure before and after fracture. Therefore, it is important to find a finite element method that can accurately simulate the processes of cortical bone crack formation, propagation, and fracture. Current simulations mainly use the principal strain or the equivalent strain to determine the mechanical state of the element in the finite element model and to perform fracture simulation, but there are few studies on the simulation accuracy when using these two types of strains.

OBJECTIVE: To testify the simulation accuracy of cortical bone fracture with the principal strain and the equivalent strain.

METHODS: The principal strain and the equivalent strain were applied to perform the three-point bending simulation, and the simulation results were compared with the experimental results to determine which strain was more accurate.

RESULTS AND CONCLUSION: (1) The failure time of the cortical bone simulated by the principal strain was significantly later than that obtained by the equivalent strain. (2) Compared with the experimental results, it was found that the simulation results obtained by equivalent strain were closer to the experimental results. (3) Therefore, simulating cortical bone crack and fracture using the equivalent strain is accurate.

Key words: cortical bone, crack, fracture, three-point bending, principal strain, equivalent strain, finite element analysis, fracture mechanism

中图分类号: